option prices
Recently Published Documents


TOTAL DOCUMENTS

852
(FIVE YEARS 163)

H-INDEX

51
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Longjin Lv ◽  
Changjuan Zheng ◽  
Luna Wang

This paper aims to study option pricing problem under the subordinated Brownian motion. Firstly, we prove that the subordinated Brownian motion controlled by the fractional diffusion equation has many financial properties, such as self-similarity, leptokurtic, and long memory, which indicate that the fractional calculus can describe the financial data well. Then, we investigate the option pricing under the assumption that the stock price is driven by the subordinated Brownian motion. The closed-form pricing formula for European options is derived. In the comparison with the classic Black–Sholes model, we find the option prices become higher, and the “volatility smiles” phenomenon happens in the proposed model. Finally, an empirical analysis is performed to show the validity of these results.


2021 ◽  
Vol 13 (24) ◽  
pp. 14011
Author(s):  
Sara Mehrab Daniali ◽  
Sergey Evgenievich Barykin ◽  
Irina Vasilievna Kapustina ◽  
Farzin Mohammadbeigi Khortabi ◽  
Sergey Mikhailovich Sergeev ◽  
...  

The Volatility Index (VIX) is a real-time index that has been used as the first measure to quantify market expectations for volatility, which affects the financial market as a main actor of the overall economy that is sensitive to the environmental and social aspects of investors and companies. The VIX is calculated using option prices for the S&P 500 Index (SPX) and is expressed as a percentage. Taking into account that VIX only shows the implicit volatility of the S&P 500 for the next 30 days, the authors develop a model for a near-optimal state trying to avoid uncertainty and insufficient accuracy. The researchers are trying to make a contribution to the theory of socially responsible portfolio management. The developed approach allows potential investments to make decisions regarding such important topics as ethical investing, performance analysis, as well as sustainable investment strategies. The approach of this research allows to use deep probabilistic convolutional neural networks based on conditional variance as a linear function of errors with the aim of estimating and predicting the VIX. For this purpose, the use of technical indicators and economic indexes such as Chicago Board Options Exchange (CBOE) VIX and S&P 500 is considered. The results of estimating and predicting the VIX with the proposed method indicate high precision and create a certainty in modeling to achieve the goals.


2021 ◽  
Vol 105 (0) ◽  
pp. 3-33
Author(s):  
E. Scalas ◽  
B. Toaldo

We consider plain vanilla European options written on an underlying asset that follows a continuous time semi-Markov multiplicative process. We derive a formula and a renewal type equation for the martingale option price. In the case in which intertrade times follow the Mittag-Leffler distribution, under appropriate scaling, we prove that these option prices converge to the price of an option written on geometric Brownian motion time-changed with the inverse stable subordinator. For geometric Brownian motion time changed with an inverse subordinator, in the more general case when the subordinator’s Laplace exponent is a special Bernstein function, we derive a time-fractional generalization of the equation of Black and Scholes.


2021 ◽  
Vol 9 (3) ◽  
pp. 77-93
Author(s):  
I. Vasilev ◽  
A. Melnikov

Option pricing is one of the most important problems of contemporary quantitative finance. It can be solved in complete markets with non-arbitrage option price being uniquely determined via averaging with respect to a unique risk-neutral measure. In incomplete markets, an adequate option pricing is achieved by determining an interval of non-arbitrage option prices as a region of negotiation between seller and buyer of the option. End points of this interval characterise the minimum and maximum average of discounted pay-off function over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such that the market becomes complete with option price uniquely determined. One can estimate the interval of non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the help of different completions. It is a dual characterisation of option prices in incomplete markets, and it is described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how this method can be exploited in optimal investment and partial hedging problems.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2890
Author(s):  
Alessio Giorgini ◽  
Rogemar S. Mamon ◽  
Marianito R. Rodrigo

Stochastic processes are employed in this paper to capture the evolution of daily mean temperatures, with the goal of pricing temperature-based weather options. A stochastic harmonic oscillator model is proposed for the temperature dynamics and results of numerical simulations and parameter estimation are presented. The temperature model is used to price a one-month call option and a sensitivity analysis is undertaken to examine how call option prices are affected when the model parameters are varied.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 196
Author(s):  
Stephan Höcht ◽  
Dilip B. Madan ◽  
Wim Schoutens ◽  
Eva Verschueren

It is generally said that out-of-the-money call options are expensive and one can ask the question from which moneyness level this is the case. Expensive actually means that the price one pays for the option is more than the discounted average payoff one receives. If so, the option bears a negative risk premium. The objective of this paper is to investigate the zero-risk premium moneyness level of a European call option, i.e., the strike where expectations on the option’s payoff in both the P- and Q-world are equal. To fully exploit the insights of the option market we deploy the Tilted Bilateral Gamma pricing model to jointly estimate the physical and pricing measure from option prices. We illustrate the proposed pricing strategy on the option surface of stock indices, assessing the stability and position of the zero-risk premium strike of a European call option. With small fluctuations around a slightly in-the-money level, on average, the zero-risk premium strike appears to follow a rather stable pattern over time.


Author(s):  
FRED ESPEN BENTH ◽  
GLEDA KUTROLLI ◽  
SILVANA STEFANI

In this paper, we introduce a dynamical model for the time evolution of probability density functions incorporating uncertainty in the parameters. The uncertainty follows stochastic processes, thereby defining a new class of stochastic processes with values in the space of probability densities. The purpose is to quantify uncertainty that can be used for probabilistic forecasting. Starting from a set of traded prices of equity indices, we do some empirical studies. We apply our dynamic probabilistic forecasting to option pricing, where our proposed notion of model uncertainty reduces to uncertainty on future volatility. A distribution of option prices follows, reflecting the uncertainty on the distribution of the underlying prices. We associate measures of model uncertainty of prices in the sense of Cont.


Sign in / Sign up

Export Citation Format

Share Document