scholarly journals Norm Comparison Estimates for the Composite Operator

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuexin Li ◽  
Yong Wang ◽  
Yuming Xing

This paper obtains the Lipschitz and BMO norm estimates for the composite operator𝕄s∘Papplied to differential forms. Here,𝕄sis the Hardy-Littlewood maximal operator, andPis the potential operator. As applications, we obtain the norm estimates for the Jacobian subdeterminant and the generalized solution of the quasilinear elliptic equation.

2005 ◽  
Vol 2005 (18) ◽  
pp. 2871-2882 ◽  
Author(s):  
Marilena N. Poulou ◽  
Nikolaos M. Stavrakakis

We prove the existence of a simple, isolated, positive principal eigenvalue for the quasilinear elliptic equation−Δpu=λg(x)|u|p−2u,x∈ℝN,lim|x|→+∞u(x)=0, whereΔpu=div(|∇u|p−2∇u)is thep-Laplacian operator and the weight functiong(x), being bounded, changes sign and is negative and away from zero at infinity.


2003 ◽  
Vol 3 (4) ◽  
Author(s):  
Beatrice Acciaio ◽  
Patrizia Pucci

AbstractWe prove the existence of radial solutions of the quasilinear elliptic equation div(A(|Du|)Du) + f(u) = 0 in ℝ


2001 ◽  
Vol 64 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Pietro Zamboni

Dedicated to Filippo ChiarenzaThe aim of this note is to prove the unique continuation property for non-negative solutions of the quasilinear elliptic equation We allow the coefficients to belong to a generalized Kato class.


2006 ◽  
Vol 136 (6) ◽  
pp. 1131-1155 ◽  
Author(s):  
B. Amaziane ◽  
L. Pankratov ◽  
A. Piatnitski

The aim of the paper is to study the asymptotic behaviour of the solution of a quasilinear elliptic equation of the form with a high-contrast discontinuous coefficient aε(x), where ε is the parameter characterizing the scale of the microstucture. The coefficient aε(x) is assumed to degenerate everywhere in the domain Ω except in a thin connected microstructure of asymptotically small measure. It is shown that the asymptotical behaviour of the solution uε as ε → 0 is described by a homogenized quasilinear equation with the coefficients calculated by local energetic characteristics of the domain Ω.


Sign in / Sign up

Export Citation Format

Share Document