scholarly journals A State-of-the-Art Review on Fatigue Life Assessment of Steel Bridges

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
X. W. Ye ◽  
Y. H. Su ◽  
J. P. Han

Fatigue is among the most critical forms of damage potentially occurring in steel bridges, while accurate assessment or prediction of the fatigue damage status as well as the remaining fatigue life of steel bridges is still a challenging and unsolved issue. There have been numerous investigations on the fatigue damage evaluation and life prediction of steel bridges by use of deterministic or probabilistic methods. The purpose of this review is devoted to presenting a summary on the development history and current status of fatigue condition assessment of steel bridges, containing basic aspects of fatigue, classical fatigue analysis methods, data-driven fatigue life assessment, and reliability-based fatigue condition assessment.

2011 ◽  
Vol 383-390 ◽  
pp. 2941-2944
Author(s):  
Wei Ming Du ◽  
Fei Xue

The crane reel is generally manufactured by section welding method when the diameter is over 380mm. With the cumulative fatigue damage principle which is based on stress S-N curve, the fatigue damage of one crane reel is analyzed by finite element method, the reel weld fatigue strength and fatigue life are calculated, and the simulation results are proved to be reliable. This method provides an efficient reference for crane reel design and residual life estimation.


Author(s):  
Jorge Silva ◽  
Hossein Ghaednia ◽  
Sreekanta Das

Pipeline is the common mode for transporting oil, gas, and various petroleum products. Aging and corrosive environment may lead to formation of various defects such as crack, dent, gouge, and corrosion. The performance evaluation of field pipelines with crack defect is important. Accurate assessment of crack depth and remaining fatigue life of pipelines with crack defect is vital for pipeline’s structural integrity, inspection interval, management, and maintenance. An experimental based research work was completed at the University of Windsor for developing a semi-empirical model for estimating the remaining fatigue life of oil and gas pipes when a longitudinal crack defect has formed. A statistical approach in conjunction with fracture mechanics was used to develop this model. Statistical analysis was undertaken on CT specimen data to develop this fatigue life assessment model. Finite element method was used for determining the stress intensity factor. The fatigue life assessment model was then validated using full-scale fatigue test data obtained from 762 mm (30 inch) diameter X65 pipe. This paper discusses the test specimens and test data obtained from this study. Development and validation of the fatigue life assessment model is also presented in this paper.


Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Litang Gao ◽  
Robert Kurth

Risk based treatment of degradation and failure in engineering components is an important topic in recent years with an emphasis on obtaining more detailed information for extreme events. Fatigue damage and life degradation caused by variable amplitude cyclic loading is dominated by such extreme events, and can be properly treated with the extreme value theory, which could help understand the damage nature of the fatigue damage process as well as to provide more efficient and robust approaches for engineering applications. In this paper, advanced extreme value theory is reviewed first. Methods such as peak counting, block maxima, and peaks over thresholds are investigated and compared in this paper with an emphasis on the relationship between the extreme value theory and the existing methods for fatigue life assessment. A few simple examples of uniaxial and multi-axial fatigue life assessment process are provided and the results are discussed. It is found that, if properly used, the extreme value theories can improve the efficiency of fatigue life assessment. Finally, a hybrid time- and frequency-based multi-axial fatigue life assessment procedure is proposed for wide band loadings.


2008 ◽  
Author(s):  
Dimitri Donskoy ◽  
Alexander Chudnovsky ◽  
Andrei Zagrai ◽  
Edward Golovin ◽  
Bengt Enflo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document