scholarly journals Classification of Multiply Travelling Wave Solutions for Coupled Burgers, Combined KdV-Modified KdV, and Schrödinger-KdV Equations

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
A. R. Seadawy ◽  
K. El-Rashidy

Some explicit travelling wave solutions to constructing exact solutions of nonlinear partial differential equations of mathematical physics are presented. By applying a theory of Frobenius decompositions and, more precisely, by using a transformation method to the coupled Burgers, combined Korteweg-de Vries- (KdV-) modified KdV and Schrödinger-KdV equation is written as bilinear ordinary differential equations and two solutions to describing nonlinear interaction of travelling waves are generated. The properties of the multiple travelling wave solutions are shown by some figures. All solutions are stable and have applications in physics.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Aiyong Chen ◽  
Yong Ding ◽  
Wentao Huang

The qualitative theory of differential equations is applied to the osmosis K(2, 2) equation. The parametric conditions of existence of the smooth periodic travelling wave solutions are given. We show that the solution map is not uniformly continuous by using the theory of Himonas and Misiolek. The proof relies on a construction of smooth periodic travelling waves with small amplitude.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Octavio Cornejo-Pérez ◽  
Haret Rosu

AbstractIn this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential equations whose solutions are expressed in terms of the exponential andWeierstrass functions.


2010 ◽  
Vol 65 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Changbum Chun

In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary solutions for the Chaffee-Infante equation with distinct physical structures. The results reveal that the exp-function method is suited for finding travelling wave solutions of nonlinear partial differential equations arising in mathematical physics


2014 ◽  
Vol 69 (3-4) ◽  
pp. 155-162 ◽  
Author(s):  
Hyunsoo Kim ◽  
Jae-Hyeong Bae ◽  
Rathinasamy Sakthivel

Coupled nonlinear partial differential equations describing the spatio-temporal dynamics of predator-prey systems and nonlinear telegraph equations have been widely applied in many real world problems. So, finding exact solutions of such equations is very helpful in the theories and numerical studies. In this paper, the Kudryashov method is implemented to obtain exact travelling wave solutions of such physical models. Further, graphic illustrations in two and three dimensional plots of some of the obtained solutions are also given to predict their behaviour. The results reveal that the Kudryashov method is very simple, reliable, and effective, and can be used for finding exact solution of many other nonlinear evolution equations.


1998 ◽  
Vol 3 (1) ◽  
pp. 98-103
Author(s):  
V. V. Gudkov

A family of the functions, intended for a construction the exact travelling wave solutions of nonlinear partial differential equations, is given. Exact solutions of the Klein‐Gordon equation with a special potential are obtained. The behavior of complex and hypercomplex solutions of the second order is presented.


2021 ◽  
Vol 2 (01) ◽  
pp. 58-63
Author(s):  
Muktarebatul Jannah ◽  
Tarikul Islam ◽  
Armina Akter

To describe the interior phenomena of the mysterious problems around the real world, non-linear partial differential equations (NLPDEs) plays a substantial role, for which construction of analytic solutions of those is most important. This paper stands for a goal to find fresh and wide-ranging solutions to some familiar NLPDEs namely the non-linear cubic Klein-Gordon (cKG) equation and the non-linear Benjamin-Ono (BO) equation. A wave variable transformation is made use to convert the mentioned equations into ordinary differential equations. To acquire the desired precise exact travelling wave solutions to the above-stated equations, the rational -expansion method is employed. Consequently, three types of equipped solutions are successfully come out in the forms of hyperbolic, trigonometric and rational functions in a compatible way. To analyse the physical problems arisen relating to nonlinear complex dynamical systems, our obtained solutions might be most helpful. So far we know, these achieved solutions are different than those in the literature. The applied method is efficient and reliable which might further be used to find different and novel solutions to many other NLPDEs successfully in research field.


Sign in / Sign up

Export Citation Format

Share Document