scholarly journals Improvement in Paretic Arm Reach-to-Grasp following Low Frequency Repetitive Transcranial Magnetic Stimulation Depends on Object Size: A Pilot Study

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jarugool Tretriluxana ◽  
Shailesh Kantak ◽  
Suradej Tretriluxana ◽  
Allan D. Wu ◽  
Beth E. Fisher

Introduction. Low frequency repetitive transcranial magnetic stimulation (LF-rTMS) delivered to the nonlesioned hemisphere has been shown to improve limited function of the paretic upper extremity (UE) following stroke. The outcome measures have largely included clinical assessments with little investigation on changes in kinematics and coordination. To date, there is no study investigating how the effects of LF-rTMS are modulated by the sizes of an object to be grasped.Objective. To investigate the effect of LF-rTMS on kinematics and coordination of the paretic hand reach-to-grasp (RTG) for two object sizes in chronic stroke.Methods. Nine participants received two TMS conditions: real rTMS and sham rTMS conditions. Before and after the rTMS conditions, cortico-motor excitability (CE) of the nonlesioned hemisphere, RTG kinematics, and coordination was evaluated. Object sizes were 1.2 and 7.2 cm in diameter.Results. Compared to sham rTMS, real rTMS significantly reduced CE of the non-lesioned M1. While rTMS had no effect on RTG action for the larger object, real rTMS significantly improved movement time, aperture opening, and RTG coordination for the smaller object.Conclusions. LF-rTMS improves RTG action for only the smaller object in chronic stroke. The findings suggest a dissociation between effects of rTMS on M1 and task difficulty for this complex skill.

2015 ◽  
Vol 8 (6) ◽  
pp. 1074-1084 ◽  
Author(s):  
Jessica M. Cassidy ◽  
Haitao Chu ◽  
David C. Anderson ◽  
Linda E. Krach ◽  
LeAnn Snow ◽  
...  

2022 ◽  
Vol 13 ◽  
Author(s):  
Ting-Yu Chou ◽  
Jia-Chi Wang ◽  
Mu-Yun Lin ◽  
Po-Yi Tsai

BackgroundAlthough low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) has shown promise in the treatment of poststroke aphasia, the efficacy of high-frequency rTMS (HF-rTMS) has yet to be determined.PurposeWe investigated the efficacy of intermittent theta burst stimulation (iTBS) in ameliorating chronic non-fluent aphasia and compared it with that of LF-rTMS.MethodsWe randomly assigned patients with poststroke non-fluent aphasia to an ipsilesional iTBS (n = 29), contralesional 1-Hz rTMS (n = 27), or sham (n = 29) group. Each group received the rTMS protocol executed in 10 daily sessions over 2 weeks. We evaluated language function before and after the intervention by using the Concise Chinese Aphasia Test (CCAT).ResultsCompared with the sham group, the iTBS group exhibited significant improvements in conversation, description, and expression scores (P = 0.0004–0.031), which characterize verbal production, as well as in auditory comprehension, reading comprehension, and matching scores (P < 0.01), which characterize language perception. The 1-Hz group exhibited superior improvements in expression, reading comprehension, and imitation writing scores compared with the sham group (P < 0.05). The iTBS group had significantly superior results in CCAT total score, matching and auditory comprehension (P < 0.05) relative to the 1-Hz group.ConclusionOur study findings contribute to a growing body of evidence that ipsilesional iTBS enhances the language recovery of patients with non-fluent aphasia after a chronic stroke. Auditory comprehension was more preferentially enhanced by iTBS compared with the 1-Hz protocol. Our findings highlight the importance of ipsilesional modulation through excitatory rTMS for the recovery of non-fluent aphasia in patients with chronic stroke.Clinical Trial Registration:[www.ClinicalTrials.gov], identifier [NCT03059225].


Sign in / Sign up

Export Citation Format

Share Document