scholarly journals Discrete Optimal Control Method Based on the Optimal Strategy of Fishing

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Lichun Zhang ◽  
Qingdao Huang

Consideration was given to the discrete optimal control method for the optimal fishing strategy. Our method is new and efficient for discrete optimal control problem, which is different from the other optimal methods such as the traditional variational method, the Pontryagin principle of maximum, and the dynamic programming. The basic construction of the model is the traditional logistic function relating to the growth of fry. The discrete optimal control method for optimal fishing strategy was used to construct the optimal rate of each fishing strategy; the main focus of our work is on the rigorous mathematical analysis of the optimal control problem. The analysis allows one to obtain the optimal initial investment amount of the fry and the optimal size of the total catch. Furthermore, when the initial investment amount of the fry is below or above the optimal value and the intrinsic growth rate of fishRis too small, we derive that fishing operations should not be started in the last few years to make the overall fishing amount optimal. At last, several typical examples are given to illustrate the obtained results.

Author(s):  
Shenglei Shi ◽  
Youlun Xiong ◽  
Jiankui Chen ◽  
Caihua Xiong

Abstract In this paper, we present a bilevel optimal motion planning (BOMP) model for autonomous parking. The BOMP model treats motion planning as an optimal control problem, in which the upper level is designed for vehicle nonlinear dynamics, and the lower level is for geometry collision-free constraints. The significant feature of the BOMP model is that the lower level is a linear programming problem that serves as a constraint for the upper-level problem. That is, an optimal control problem contains an embedded optimization problem as constraints. Traditional optimal control methods cannot solve the BOMP problem directly. Therefore, the modified approximate Karush–Kuhn–Tucker theory is applied to generate a general nonlinear optimal control problem. Then the pseudospectral optimal control method solves the converted problem. Particularly, the lower level is the $$J_2$$J2-function that acts as a distance function between convex polyhedron objects. Polyhedrons can approximate objects in higher precision than spheres or ellipsoids. As a result, a fast high-precision BOMP algorithm for autonomous parking concerning dynamical feasibility and collision-free property is proposed. Simulation results and experiment on Turtlebot3 validate the BOMP model, and demonstrate that the computation speed increases almost two orders of magnitude compared with the area criterion based collision avoidance method.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Liu ◽  
Shengjing Tang ◽  
Jie Guo

The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3), the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750095 ◽  
Author(s):  
N. H. Sweilam ◽  
O. M. Saad ◽  
D. G. Mohamed

In this paper, optimal control for a novel West Nile virus (WNV) model of fractional order derivative is presented. The proposed model is governed by a system of fractional differential equations (FDEs), where the fractional derivative is defined in the Caputo sense. An optimal control problem is formulated and studied theoretically using the Pontryagin maximum principle. Two numerical methods are used to study the fractional-order optimal control problem. The methods are, the iterative optimal control method (OCM) and the generalized Euler method (GEM). Positivity, boundedness and convergence of the IOCM are studied. Comparative studies between the proposed methods are implemented, it is found that the IOCM is better than the GEM.


Sign in / Sign up

Export Citation Format

Share Document