scholarly journals Intrinsic Optimal Control for Mechanical Systems on Lie Group

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Liu ◽  
Shengjing Tang ◽  
Jie Guo

The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3), the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.

2017 ◽  
Vol 10 (07) ◽  
pp. 1750095 ◽  
Author(s):  
N. H. Sweilam ◽  
O. M. Saad ◽  
D. G. Mohamed

In this paper, optimal control for a novel West Nile virus (WNV) model of fractional order derivative is presented. The proposed model is governed by a system of fractional differential equations (FDEs), where the fractional derivative is defined in the Caputo sense. An optimal control problem is formulated and studied theoretically using the Pontryagin maximum principle. Two numerical methods are used to study the fractional-order optimal control problem. The methods are, the iterative optimal control method (OCM) and the generalized Euler method (GEM). Positivity, boundedness and convergence of the IOCM are studied. Comparative studies between the proposed methods are implemented, it is found that the IOCM is better than the GEM.


Sign in / Sign up

Export Citation Format

Share Document