scholarly journals Modified Ciphertext-Policy Attribute-Based Encryption Scheme with Efficient Revocation for PHR System

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hongying Zheng ◽  
Jieming Wu ◽  
Bo Wang ◽  
Jianyong Chen

Attribute-based encryption (ABE) is considered a promising technique for cloud storage where multiple accessors may read the same file. For storage system with specific personal health record (PHR), we propose a modified ciphertext-policy attribute-based encryption scheme with expressive and flexible access policy for public domains. Our scheme supports multiauthority scenario, in which the authorities work independently without an authentication center. For attribute revocation, it can generate different update parameters for different accessors to effectively resist both accessor collusion and authority collusion. Moreover, a blacklist mechanism is designed to resist role-based collusion. Simulations show that the proposed scheme can achieve better performance with less storage occupation, computation assumption, and revocation cost compared with other schemes.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kai Zhang ◽  
Yanping Li ◽  
Yun Song ◽  
Laifeng Lu ◽  
Tao Zhang ◽  
...  

Multiauthority ciphertext-policy attribute-based encryption (MA-CP-ABE) is a promising technique for secure data sharing in cloud storage. As multiple users with same attributes have same decryption privilege in MA-CP-ABE, the identity of the decryption key owner cannot be accurately traced by the exposed decryption key. This will lead to the key abuse problem, for example, the malicious users may sell their decryption keys to others. In this paper, we first present a traceable MA-CP-ABE scheme supporting fast access and malicious users’ accountability. Then, we prove that the proposed scheme is adaptively secure under the symmetric external Diffie–Hellman assumption and fully traceable under the q -Strong Diffie–Hellman assumption. Finally, we design a traceable and revocable MA-CP-ABE system for secure and efficient cloud storage from the proposed scheme. When a malicious user leaks his decryption key, our proposed system can not only confirm his identity but also revoke his decryption privilege. Extensive efficiency analysis results indicate that our system requires only constant number of pairing operations for ciphertext data access.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xingguang Zhou ◽  
Jianwei Liu ◽  
Zongyang Zhang ◽  
Qianhong Wu

The application of cloud storage system has been deployed widely in recent years. A lot of electronic medical records (EMRs) are collected and uploaded to the cloud for scalable sharing among the authority users. It is necessary to guarantee the confidentiality of EMRs and the privacy of EMR owners. To achieve this target, we summarize a series of attack behaviors in the cloud storage system and present the security model against many types of unexpected privacy leakage. Privacy of unassailed EMRs is guaranteed in this model, and the influence of privacy leakage is controlled in a certain scope. We also propose a role-based access control scheme to achieve flexible access control on these private EMRs. One can access medical records only if his/her role satisfies the defined access policy, which implies a fine-grained access control. Theoretical and experimental analyses show the efficiency of our scheme in terms of computation and communication.


2021 ◽  
Vol 13 (11) ◽  
pp. 279
Author(s):  
Siti Dhalila Mohd Satar ◽  
Masnida Hussin ◽  
Zurina Mohd Hanapi ◽  
Mohamad Afendee Mohamed

Managing and controlling access to the tremendous data in Cloud storage is very challenging. Due to various entities engaged in the Cloud environment, there is a high possibility of data tampering. Cloud encryption is being employed to control data access while securing Cloud data. The encrypted data are sent to Cloud storage with an access policy defined by the data owner. Only authorized users can decrypt the encrypted data. However, the access policy of the encrypted data is in readable form, which results in privacy leakage. To address this issue, we proposed a reinforcement hiding in access policy over Cloud storage by enhancing the Ciphertext Policy Attribute-based Encryption (CP-ABE) algorithm. Besides the encryption process, the reinforced CP-ABE used logical connective operations to hide the attribute value of data in the access policy. These attributes were converted into scrambled data along with a ciphertext form that provides a better unreadability feature. It means that a two-level concealed tactic is employed to secure data from any unauthorized access during a data transaction. Experimental results revealed that our reinforced CP-ABE had a low computational overhead and consumed low storage costs. Furthermore, a case study on security analysis shows that our approach is secure against a passive attack such as traffic analysis.


2014 ◽  
Vol 571-572 ◽  
pp. 79-89
Author(s):  
Ting Zhong ◽  
You Peng Sun ◽  
Qiao Liu

In the cloud storage system, the server is no longer trusted, which is different from the traditional storage system. Therefore, it is necessary for data owners to encrypt data before outsourcing it for sharing. Simultaneously, the enforcement of access policies and support of policies updates becomes one of the most challenging issues. Ciphertext-policy attribute-based encryption (CP-ABE) is an appropriate solution to this issue. However, it comes with a new obstacle which is the attribute and user revocation. In this paper, we propose a fine-grained access control scheme with efficient revocation based on CP-ABE approach. In the proposed scheme, we not only realize an efficient and immediate revocation, but also eliminate some burden of computational overhead. The analysis results indicate that the proposed scheme is efficient and secure for access control in cloud storage systems.


Sign in / Sign up

Export Citation Format

Share Document