scholarly journals Decision-Based Marginal Total Variation Diffusion for Impulsive Noise Removal in Color Images

2017 ◽  
Vol 2017 ◽  
pp. 1-18
Author(s):  
Hongyao Deng ◽  
Qingxin Zhu ◽  
Xiuli Song

Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation L1 method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed in this paper that overcomes this limitation that is based on the following facts: (i) each channel in a color image is contaminated independently, and contaminative components are independent and identically distributed; (ii) in a natural image the gradients of different components of a pixel are similar to one another. This method divides components into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted, noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Hongyao Deng ◽  
Qingxin Zhu ◽  
Xiuli Song ◽  
Jinsong Tao

Impulsive noise removal usually employs median filtering, switching median filtering, the total variation L1 method, and variants. These approaches however often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A new method to remove noise is proposed in this paper to overcome this limitation, which divides pixels into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the pixels are divided into corrupted and noise-free; if the image is corrupted by random valued impulses, the pixels are divided into corrupted, noise-free, and possibly corrupted. Pixels falling into different categories are processed differently. If a pixel is corrupted, modified total variation diffusion is applied; if the pixel is possibly corrupted, weighted total variation diffusion is applied; otherwise, the pixel is left unchanged. Experimental results show that the proposed method is robust to different noise strengths and suitable for different images, with strong noise removal capability as shown by PSNR/SSIM results as well as the visual quality of restored images.



2008 ◽  
Vol 17 (4) ◽  
pp. 043006 ◽  
Author(s):  
Yuksel Alp Aslandogan


Author(s):  
M. Emre Celebi ◽  
Hassan A. Kingravi ◽  
Bakhtiyar Uddin ◽  
Y. Alp Aslandogan




Sign in / Sign up

Export Citation Format

Share Document