color image
Recently Published Documents


TOTAL DOCUMENTS

6116
(FIVE YEARS 1229)

H-INDEX

84
(FIVE YEARS 18)

Author(s):  
Karanrat Thammarak ◽  
Prateep Kongkla ◽  
Yaowarat Sirisathitkul ◽  
Sarun Intakosum

Optical character recognition (OCR) is a technology to digitize a paper-based document to digital form. This research studies the extraction of the characters from a Thai vehicle registration certificate via a Google Cloud Vision API and a Tesseract OCR. The recognition performance of both OCR APIs is also examined. The 84 color image files comprised three image sizes/resolutions and five image characteristics. For suitable image type comparison, the greyscale and binary image are converted from color images. Furthermore, the three pre-processing techniques, sharpening, contrast adjustment, and brightness adjustment, are also applied to enhance the quality of image before applying the two OCR APIs. The recognition performance was evaluated in terms of accuracy and readability. The results showed that the Google Cloud Vision API works well for the Thai vehicle registration certificate with an accuracy of 84.43%, whereas the Tesseract OCR showed an accuracy of 47.02%. The highest accuracy came from the color image with 1024×768 px, 300dpi, and using sharpening and brightness adjustment as pre-processing techniques. In terms of readability, the Google Cloud Vision API has more readability than the Tesseract. The proposed conditions facilitate the possibility of the implementation for Thai vehicle registration certificate recognition system.


2022 ◽  
Vol 414 ◽  
pp. 126654
Author(s):  
You-Wei Wen ◽  
Mingchao Zhao ◽  
Michael Ng

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xin Liu ◽  
Hua Pan

The purpose is to provide a more reliable human-computer interaction (HCI) guarantee for animation works under virtual reality (VR) technology. Inspired by artificial intelligence (AI) technology and based on the convolutional neural network—support vector machine (CNN-SVM), the differences between animation works under VR technology and traditional animation works are analyzed through a comprehensive analysis of VR technology. The CNN-SVM gesture recognition algorithm using the error correction strategy is designed based on HCI recognition. To have better recognition performance, the advantages of depth image and color image are combined, and the collected information is preprocessed including the relations between the times of image training iterations and the accuracy of different methods in the direction of the test set. After experiments, the maximum accuracy of the preprocessed image can reach 0.86 showing the necessity of image preprocessing. The recognition accuracy of the optimized CNN-SVM is compared with other algorithm models. Experiments show that the accuracy of the optimized CNN-SVM has an upward trend compared with the previous CNN-SVM, and the accuracy reaches 0.97. It proves that the designed algorithm can provide good technical support for VR animation, so that VR animation works can interact well with the audience. It is of great significance for the development of VR animation and the improvement of people’s artistic life quality.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Jingjing Mao ◽  
Zhihui Wu ◽  
Xinhao Feng

There always exists subjective and objective color differences between digital wood grain and real wood grain, making it difficult to replicate the color of natural timber. Therefore, we described a novel method of correcting the chromatic aberration of scanned wood grain to maximally restore the objective color information of the real wood grain. A point-to-point correction model of chromatic aberration between the scanned wood grain and the measured wood grain was established based on Circle 1 by adjusting the three channels (sR, sG, and sB) of the scanned images. A conversion of the color space was conducted using the mutual conversion formulas. The color change of the scanned images before and after the correction was evaluated through the L* a* b* color-mode-based ΔE* and the lαβ color-model-based CIQI (Color Image Quality Index) and CQE (Color Quality Enhancement). The experimental results showed that the chromatic aberration ΔE* between the scanned wood grain and the measured wood grain decreased and the colorfulness index CIQI of the scanned wood grain increased for most wood specimens after the correction. The values of ΔE* of the twenty kinds of wood specimens decreased by an average of 3.1 in Circle 1 and 2.3 in Circle 2, thus the correction model established based on Circle 1 was effective. The color of the scanned wood grain was more consistent with that of the originals after the correction, which would provide a more accurate color information for the reproductions of wood grain and had an important practical significance.


Sign in / Sign up

Export Citation Format

Share Document