digital images
Recently Published Documents


TOTAL DOCUMENTS

4061
(FIVE YEARS 906)

H-INDEX

72
(FIVE YEARS 10)

2022 ◽  
Vol 73 ◽  
pp. 103435
Author(s):  
Ânderson Ramos Carvalho ◽  
Luana Candice Genz Bazana ◽  
Alexandre Meneghello Fuentefria ◽  
Marco Flôres Ferrão

Author(s):  
Anderson G. Costa ◽  
Eudócio R. O. da Silva ◽  
Murilo M. de Barros ◽  
Jonatthan A. Fagundes

ABSTRACT The quality and price of coffee drinks can be affected by contamination with impurities during roasting and grinding. Methods that enable quality control of marketed products are important to meet the standards required by consumers and the industry. The purpose of this study was to estimate the percentage of impurities contained in coffee using textural and colorimetric descriptors obtained from digital images. Arabica coffee beans (Coffea arabica L.) at 100% purity were subjected to roasting and grinding processes, and the initially pure ground coffee was gradually contaminated with impurities. Digital images were collected from coffee samples with 0, 10, 30, 50, and 70% impurities. From the images, textural descriptors of the histograms (mean, standard deviation, entropy, uniformity, and third moment) and colorimetric descriptors (RGB color space and HSI color space) were obtained. The principal component regression (PCR) method was applied to the data group of textural and colorimetric descriptors for the development of linear models to estimate coffee impurities. The selected models for the textural descriptors data group and the colorimetric descriptors data group were composed of two and three principal components, respectively. The model from the colorimetric descriptors showed a greater capacity to estimate the percentage of impurities in coffee when compared to the model from the textural descriptors.


Author(s):  
Harsha B. K.

Abstract: Different colored digital images can be represented in a variety of color spaces. Red-Green-Blue is the most commonly used color space. That can be transformed into Luminance, Blue difference, Red difference. These color pixels' defined features provide strong information about whether they belong to human skin or not. A novel color-based feature extraction method is proposed in this paper, which makes use of both red, green, blue, luminance, hue, and saturation information. The proposed method is used on an image database that contains people of various ages, races, and genders. The obtained features are used to segment the human skin using the Support-Vector- Machine algorithm, and the promising performance results of 89.86% accuracy are then compared to the most commonly used methods in the literature. Keywords: Skin segmentation, SVM, feature extraction, digital images


Author(s):  
Gul Tahaoglu ◽  
Guzin Ulutas ◽  
Beste Ustubioglu ◽  
Mustafa Ulutas ◽  
Vasif V. Nabiyev

Author(s):  
V. A. Ganchenko ◽  
E. E. Marushko ◽  
L. P. Podenok ◽  
A. V. Inyutin

This article describes evaluation the information content of metal objects surfaces for classification of fractures using 2D and 3D data. As parameters, the textural characteristics of Haralick, local binary patterns of pixels for 2D images, macrogeometric descriptors of metal objects digitized by a 3D scanner are considered. The analysis carried out on basis of information content estimation to select the features that are most suitable for solving the problem of metals fractures classification. The results will be used for development of methods for complex forensic examination of complex polygonal surfaces of solid objects for automated system for analyzing digital images.


2022 ◽  
pp. 152-164
Author(s):  
Eimad Abdu Abusham ◽  
Aiysha Ali Majid Al-Marzouqi ◽  
Mahmood Al-Bahri ◽  
Maryam G. Aljabri

The use of digital images has become very common because of the rapid increase of the internet over time. Moving digital images over the internet is easy, but keeping ownership is complex, and serious issues have emerged. Forgery, fraud, and pirating of this content are rising. Different techniques used to protect images, like watermarking and steganography, but these methods are not enough toprotect. So, providing new techniques is essential for protecting image ownership. We have proposed a fusion method of steganography and watermarking in this work. First, the secret message is encoded within the original image using the LSB technique to obtain the stego image. Secondly, the watermarking process is applied on the stego image using text watermarking or image watermarking to provide stego-watermarked-image. The proposed fusion watermarking and steganography method is very useful for protecting image ownership over insecure communication channels. An attacker cannot get the desired watermarked image from the stego-watermarked-image without knowing the secret message hiding inside it using the LSB technique. The proposed method is efficient, simple and secure; it provides significant protection for image ownership.


Author(s):  
Y. I. Golub

Quality assessment is an integral stage in the processing and analysis of digital images in various automated systems. With the increase in the number and variety of devices that allow receiving data in various digital formats, as well as the expansion of human activities in which information technology (IT) is used, the need to assess the quality of the data obtained is growing. As well as the bar grows for the requirements for their quality.The article describes the factors that deteriorate the quality of digital images, areas of application of image quality assessment functions, a method for normalizing proximity measures, classes of digital images and their possible distortions, image databases available on the Internet for conducting experiments on assessing image quality with visual assessments of experts.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
K. C. Santosh ◽  
Nijalingappa Pradeep ◽  
Vikas Goel ◽  
Raju Ranjan ◽  
Ekta Pandey ◽  
...  

The use of digital medical images is increasing with advanced computational power that has immensely contributed to developing more sophisticated machine learning techniques. Determination of age and gender of individuals was manually performed by forensic experts by their professional skills, which may take a few days to generate results. A fully automated system was developed that identifies the gender of humans and age based on digital images of teeth. Since teeth are a strong and unique part of the human body that exhibits least subject to risk in natural structure and remains unchanged for a longer duration, the process of identification of gender- and age-related information from human beings is systematically carried out by analyzing OPG (orthopantomogram) images. A total of 1142 digital X-ray images of teeth were obtained from dental colleges from the population of the middle-east part of Karnataka state in India. 80% of the digital images were considered for training purposes, and the remaining 20% of teeth images were for the testing cases. The proposed gender and age determination system finds its application widely in the forensic field to predict results quickly and accurately. The prediction system was carried out using Multiclass SVM (MSVM) classifier algorithm for age estimation and LIBSVM classifier for gender prediction, and 96% of accuracy was achieved from the system.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Moataz Z. Salim ◽  
Ali J. Abboud ◽  
Remzi Yildirim

The usage of images in different fields has increased dramatically, especially in medical image analysis and social media. Many risks can threaten the integrity and confidentiality of digital images transmitted through the internet. As such, the preservation of the contents of these images is of the utmost importance for sensitive healthcare systems. In this paper, the researchers propose a block-based approach to protect the integrity of digital images by detecting and localizing forgeries. It employs a visual cryptography-based watermarking approach to provide the capabilities of forgery detection and localization. In this watermarking scheme, features and key and secret shares are generated. The feature share is constructed by extracting features from equal-sized blocks of the image by using a Walsh transform, a local binary pattern and a discrete wavelet transform. Then, the key share is generated randomly from each image block, and the secret share is constructed by applying the XOR operation between the watermark, feature share and key share. The CASIA V 1.0 and SIPI datasets were used to check the performance and robustness of the proposed method. The experimental results from these datasets revealed that the percentages of the precision, recall and F1 score classification indicators were approximately 97% for these indicators, while the percentages of the TAF and NC image quality indicators were approximately 97% and 96% after applying several known image processing and geometric attacks. Furthermore, the comparative experimental results with the state-of-art approaches proved the robustness and noticeable improvement in the proposed approach for the detection and localization of image forgeries in terms of classification and quality measures.


Sign in / Sign up

Export Citation Format

Share Document