scholarly journals A Stochastic Differential Game of Transboundary Pollution under Knightian Uncertainty of Stock Dynamics

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chunyan Fu ◽  
Yongxi Yi ◽  
Susu Cheng

With the robust control framework of Hansen and Sargent (2001), this paper investigates a stochastic differential game of transboundary pollution between two regions under Knightian uncertainty of stock dynamics. Both regions are assumed to play a noncooperative and a cooperative game, and the worst-case pollution accumulation processes for discrete robustness parameters are characterized. Our objective is to identify both regions’ optimal output and emission levels and analyze the effects of the Knightian uncertainty of pollution stock dynamics on both regions’ optimization behavior. We illustrate the results with some numerical examples.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yongxi Yi ◽  
Rongwei Xu ◽  
Sheng Zhang

Considering the fact that transboundary pollution control calls for the cooperation between interested parties, this paper studies a cooperative stochastic differential game of transboundary industrial pollution between two asymmetric nations in infinite-horizon level. In this paper, we model two ways of transboundary pollution: one is an accumulative global pollutant with an uncertain evolutionary dynamic and the other is a regional nonaccumulative pollutant. In our model, firms and governments are separated entities and they play a Stackelberg game, while the governments of the two nations can cooperate in pollution reduction. We discuss the feedback Nash equilibrium strategies of governments and industrial firms, and it is found that the governments being cooperative in transboundary pollution control will set a higher pollution tax rate and make more pollution abatement effort than when they are noncooperative. Additionally, a payment distribution mechanism that supports the subgame consistent solution is proposed.


Author(s):  
Mohammad Hossein Basiri ◽  
Mohammad Saleh Tavazoei

Recently, a robust controller has been proposed to be used in control of plants with large uncertainty in location of one of their poles. By using this controller, not only the phase margin and gain crossover frequency are adjustable for the nominal case but also the phase margin remains constant, notwithstanding the variations in location of the uncertain pole of the plant. In this paper, the tuning rule of the aforementioned controller is extended such that it can be applied in control of plants modeled by fractional order models. Numerical examples are provided to show the effectiveness of the tuned controller.


2021 ◽  
Vol 22 (5) ◽  
pp. 1291-1303
Author(s):  
Yulong Liu ◽  
Xuewu Ji ◽  
Kaiming Yang ◽  
Xiangkun He ◽  
Shirou Nakano

Sign in / Sign up

Export Citation Format

Share Document