scholarly journals Heterogeneous Gray-Temperature Fusion-Based Deep Learning Architecture for Far Infrared Small Target Detection

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Junhwan Ryu ◽  
Sungho Kim

This paper proposes the end-to-end detection of a deep network for far infrared small target detection. The problem of detecting small targets has been a subject of research for decades and has been applied mainly in the field of surveillance. Traditional methods focus on filter design for each environment, and several steps are needed to obtain the final detection result. Most of them work well in a given environment but are vulnerable to severe clutter or environmental changes. This paper proposes a novel deep learning-based far infrared small target detection method and a heterogeneous data fusion method to solve the lack of semantic information due to the small target size. Heterogeneous data consists of radiometric temperature data (14-bit) and gray scale data (8-bit), which includes the physical meaning of the target, and compares the effects of the normalization method to fuse heterogeneous data. Experiments were conducted using an infrared small target dataset built directly on the cloud backgrounds. The experimental results showed that there is a significant difference in performance according to the various fusion methods and normalization methods, and the proposed detector showed approximately 20% improvement in average precision (AP) compared to the baseline constant false alarm rate (CFAR) detector.

Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


2016 ◽  
Vol 55 (27) ◽  
pp. 7604 ◽  
Author(s):  
Minjie Wan ◽  
Guohua Gu ◽  
Weixian Qian ◽  
Kan Ren ◽  
Qian Chen

Sign in / Sign up

Export Citation Format

Share Document