salient region
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 54)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
pp. 333-343
Author(s):  
Yi-chen Gai ◽  
Yan-li Han ◽  
Lei Peng ◽  
Xuyang Jiang ◽  
Rui-xuan Wang

2021 ◽  
Author(s):  
Jianjun Jiao ◽  
Xiaopeng Wang ◽  
Jungping Zhang ◽  
Qingsheng Wang

Author(s):  
A. Sledz ◽  
C. Heipke

Abstract. Thermal anomaly detection has an important role in remote sensing. One of the most widely used instruments for this task is a Thermal InfraRed (TIR) camera. In this work, thermal anomaly detection is formulated as a salient region detection, which is motivated by the assumption that a hot region often attracts attention of the human eye in thermal infrared images. Using TIR and optical images together, our working hypothesis is defined in the following manner: a hot region that appears as a salient region only in the TIR image and not in the optical image is a thermal anomaly. This work presents a two-step classification method for thermal anomaly detection based on an information fusion of saliency maps derived from both, TIR and optical images. Information fusion, based on the Dempster-Shafer evidence theory, is used in the first phase to find the location of regions suspected to be thermal anomalies. This classification problem is formulated as a multi-class problem and is carried out in an unsupervised manner on a pixel level. In the following phase, classification is formulated as a binary region-based problem in order to differentiate between normal temperature variations and thermal anomalies, while Random Forest (RF) is chosen as the classifier. In the seconds phase, the classification results from the previous phase are used as features along with temperature information and height details, which are obtained from a Digital Surface Model (DSM). We tested the approach using a dataset, which was collected from a UAV with TIR and optical cameras for monitoring District Heating Systems (DHS). Despite some limitations outlined in the paper, the presented innovative method to identify thermal anomalies has achieved up to 98.7 percent overall accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3963
Author(s):  
Siqi Liu ◽  
Shaode Yu ◽  
Yanming Zhao ◽  
Zhulin Tao ◽  
Hang Yu ◽  
...  

Salient regions provide important cues for scene understanding to the human vision system. However, whether the detected salient regions are helpful in image blur estimation is unknown. In this study, a salient region guided blind image sharpness assessment (BISA) framework is proposed, and the effect of the detected salient regions on the BISA performance is investigated. Specifically, three salient region detection (SRD) methods and ten BISA models are jointly explored, during which the output saliency maps from SRD methods are re-organized as the input of BISA models. Consequently, the change in BISA metric values can be quantified and then directly related to the difference in BISA model inputs. Finally, experiments are conducted on three Gaussian blurring image databases, and the BISA prediction performance is evaluated. The comparison results indicate that salient region input can help achieve a close and sometimes superior performance to a BISA model over the whole image input. When using the center region input as the baseline, the detected salient regions from the saliency optimization from robust background detection (SORBD) method lead to consistently better score prediction, regardless of the BISA model. Based on the proposed hybrid framework, this study reveals that saliency detection benefits image blur estimation, while how to properly incorporate SRD methods and BISA models to improve the score prediction will be explored in our future work.


Sign in / Sign up

Export Citation Format

Share Document