scholarly journals Distributed Cooperative Backpressure-Based Traffic Light Control Method

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Shenxue Hao ◽  
Licai Yang ◽  
Li Ding ◽  
Yajuan Guo

On the foundation of the original backpressure-based traffic light control algorithm, a distributed cooperative backpressure-based traffic light control method is proposed in this paper. The urban traffic network is modeled as a smart agent-controlled queuing network, in which the intersection agents exchange the queue length information and the selected activating light phase information of neighboring intersections through communications and determine the activating light phase at each time slot according to local traffic information. The improved phase pressure computation method considers the phase state of downstream intersections instead of only the queue length of the local intersections. Light phase switching coordination among adjacent intersections is achieved using the consensus-based bundle algorithm, in which the cooperative light phase switching problem is viewed as a task assignment issue among adjacent intersections. Simulation results illustrated that the proposed cooperative backpressure-based traffic light control method obtained better performance than the original backpressure-based and fixed-time traffic control methods.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4291 ◽  
Author(s):  
Qiang Wu ◽  
Jianqing Wu ◽  
Jun Shen ◽  
Binbin Yong ◽  
Qingguo Zhou

With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment.


Sign in / Sign up

Export Citation Format

Share Document