scholarly journals Application of Modified NSGA-II to the Transit Network Design Problem

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Jie Yang ◽  
Yangsheng Jiang

The transit network design problem involves determining a certain number of routes to operate in an urban area to balance the costs of the passengers and the operator. In this paper, we simultaneously determine the route structure of each route and the number of routes in the final solution. A novel initial route set generation algorithm and a route set size alternating heuristic are embedded into a nondominated sorting genetic algorithm-II- (NSGA-II-) based solution framework to produce the approximate Pareto front. The initial route set generation algorithm aims to generate high-quality initial solutions for succeeding optimization procedures. To explore the solution space and to have solutions with a different number of routes, a route set size alternating heuristic is developed to change the number of routes in a solution by adding or deleting one route. Experiments were performed on Mandl’s network and four larger Mumford’s networks. Compared with a fixed route set size approach, the proposed NSGA-II-based solution method can produce an approximate Pareto front with much higher solution quality as well as improved computation efficiency.

2017 ◽  
Vol 13 (25) ◽  
pp. 29-69
Author(s):  
Natalia Andrea Garzon ◽  
Eliana María González Neira ◽  
Ignacio Pérez Vélez

En este artículo se estudia el problema de Red de Transporte, usualmente conocido como TNDP (Transit Network Design Problem) multiobjetivo. Este consiste en encontrar la combinación ideal de rutas y frecuencias, que permita realizar un balance entre los intereses de los usuarios y los operadores, que se contraponen. Utiliza como datos de entrada un grafo con sus respectivos costos de transporte (en este caso tiempos) y demandas asociadas a cada par de nodos. Como método de solución a este problema de optimización combinatoria multiobjetivo, se propone el uso de la metaheurística Búsqueda en Vecindades Variables (VNS), que resuelve problemas de optimización buscando soluciones competitivas mediante el cambio de vecindario iterativamente. El método propuesto fue probado inicialmente en el caso de estudio diseñado por Mandl, que consiste en 15 nodos y 21 arcos, y una matriz de demandas simétrica; y posteriormente para otras 11 instancias con tres tamaños de grafo diferentes (15, 30, 45 nodos). El modelo primero se corrió con el caso original para compararlo con autores que en oportunidades pasadas han trabajado el mismo problema. Posteriormente el VNS propuesto se probó con un modelo de demanda cambiante en 3 momentos del día (Mañana, tarde y noche) para corroborar los resultados positivos obtenidos en el primer ejercicio y darle un alcance mayor a la solución del problema.


Sign in / Sign up

Export Citation Format

Share Document