scholarly journals Fractional-Order Modeling and Analysis of a Variable Structure Hybrid Energy Storage System for EVs

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jianlin Wang ◽  
Dan Xu ◽  
Jiahui Zhou ◽  
Jinlu Mao

Hybrid energy storage system has been widely studied as an important technology for electric vehicles. Since the hybrid energy storage system is a nonlinear and complex system, the modeling of the system and the high-precision nonlinear control strategy are technical difficulties for research. The establishment of a high-precision mathematical model of the hybrid energy storage system is the basis for the study of high-quality nonlinear control algorithms. Fortunately, the theory of fractional calculus can help build accurate mathematical models of hybrid energy storage systems. In order to obtain the high-quality nonlinear control strategy of this complex system, this paper, respectively, carried out fractional-order modeling and analysis on the three basic equivalent working states of the hybrid energy storage system of electric vehicles. Among them, the fractional-order average state space model is carried out for the equivalent Buck and Boost mode. Also, the steady-state analysis of the equivalent Dual-Boost mode is carried out by combining the fractional-order calculus theory with the equivalent small parameter variable method. Finally, the effectiveness and precision of the fractional-order model are proved by simulation and experiment.

Sign in / Sign up

Export Citation Format

Share Document