scholarly journals Existence and Large Time Behavior of Entropy Solutions to One-Dimensional Unipolar Hydrodynamic Model for Semiconductor Devices with Variable Coefficient Damping

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yan Li ◽  
Yanqiu Cheng ◽  
Huimin Yu

In this paper, we investigate the global existence and large time behavior of entropy solutions to one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Possion equations with time and spacedependent damping in a bounded interval. Firstly, we prove the existence of entropy solutions through vanishing viscosity method and compensated compactness framework. Based on the uniform estimates of density, we then prove the entropy solutions converge to the corresponding unique stationary solution exponentially with time. We generalize the existing results to the variable coefficient damping case.

Author(s):  
Yanqiu Cheng ◽  
Xixi Fang ◽  
Huimin Yu

In this paper, we are concerned with the global existence, large time behavior, and timeincreasing-rate of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations. When the adiabatic index γ > 2, the L∞ estimates of artificial viscosity approximate solutions are obtained by using entropy inequality and maximum principle. Then the L∞ compensated compactness framework demonstrates theconvergence of approximate solutions. Finally, the global entropy solutions are proved to decay exponentially fast to the stationary solution, without any assumption on the smallness of initial data and doping profile.


Sign in / Sign up

Export Citation Format

Share Document