uniform estimates
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 0)

Author(s):  
Sunghan Kim ◽  
Ki-Ahm Lee

AbstractThis article is concerned with uniform $$C^{1,\alpha }$$ C 1 , α and $$C^{1,1}$$ C 1 , 1 estimates in periodic homogenization of fully nonlinear elliptic equations. The analysis is based on the compactness method, which involves linearization of the operator at each approximation step. Due to the nonlinearity of the equations, the linearized operators involve the Hessian of correctors, which appear in the previous step. The involvement of the Hessian of the correctors deteriorates the regularity of the linearized operator, and sometimes even changes its oscillating pattern. These issues are resolved with new approximation techniques, which yield a precise decomposition of the regular part and the irregular part of the homogenization process, along with a uniform control of the Hessian of the correctors in an intermediate level. The approximation techniques are even new in the context of linear equations. Our argument can be applied not only to concave operators, but also to certain class of non-concave operators.



Author(s):  
Pierre Monmarché ◽  
Lucas Journel

We establish the convergences (with respect to the simulation time $t$; the number of particles $N$; the timestep $\gamma$) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary distribution of a diffusion on the $d$-dimensional torus, killed at a smooth rate. In these conditions, quantitative bounds are obtained that, for each parameter ($t\rightarrow \infty$, $N\rightarrow \infty$ or $\gamma\rightarrow 0$) are independent from the two others. p, li { white-space: pre-wrap; }



2021 ◽  
Vol 26 (4) ◽  
pp. 519-527
Author(s):  
Jishan Fan ◽  
Peng Wang ◽  
Yong Zhou

In this paper, we are concerned with the uniform regularity estimates of smooth solutions to the isentropic compressible magneto-micropolar system in T3. Under the assumption that , and by applying the classic bilinear commutator and product estimates, the uniform estimates of solutions to the isentropic compressible magneto-micropolar system are established in space, .



2021 ◽  
Author(s):  
Dor Elboim ◽  
Ofir Gorodetsky


Author(s):  
Fuqing Gao ◽  
Jianyong Mu

We establish a moderate deviation principle for linear eigenvalue statistics of [Formula: see text]-ensembles in the one-cut regime with a real-analytic potential. The main ingredient is to obtain uniform estimates for the correlators of a family of perturbations of [Formula: see text]-ensembles using the loop equations.



2021 ◽  
Vol 157 (7) ◽  
pp. 1610-1651
Author(s):  
Pascal Autissier ◽  
Dante Bonolis ◽  
Youness Lamzouri

In this paper, we investigate the distribution of the maximum of partial sums of families of $m$ -periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of $\ell$ -adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of $m$ -periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp.



Author(s):  
Sabine Jansen ◽  
Wolfgang König ◽  
Bernd Schmidt ◽  
Florian Theil

AbstractWe consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature $$1/\beta \in (0,\infty )$$ 1 / β ∈ ( 0 , ∞ ) . The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of $$N\exp (- \beta e_\mathrm {surf}/2)$$ N exp ( - β e surf / 2 ) with $$e_\mathrm {surf}>0$$ e surf > 0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.



Author(s):  
ALEXANDER BRUDNYI

Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .





Sign in / Sign up

Export Citation Format

Share Document