scholarly journals A Novel Raster Map Exchange Scheme Based on Visual Cryptography

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lijing Ren

Raster map is an image that has been discretized in space and brightness, and it is an important carrier of geospatial data. With the rapid development of Internet and big data technologies, preserving the privacy of raster map has become an urgent task. To solve these issues, we propose a novel extended visual cryptography scheme to securely store a raster map into other two meaningful halftone maps in the paper. The scheme avoids the random-looking shares of visual cryptography schemes which are vulnerable and hard to manage. We first apply the halftone and color decomposition methods to transform a color secret map into halftone images. After that, we encode the secret map block by block to avoid pixel expansion. At last, by optimizing the selection of encrypted blocks, we achieve a high-quality secret recovery from generated multiple equal-sized shares. The technique used is to employ a versatile and secure raster map exchange. Experimental results show that, compared with previous work, the proposed scheme significantly improves the performance of recovered raster maps.

2014 ◽  
Vol 37 (3) ◽  
pp. 168-177 ◽  
Author(s):  
Nazanin Askari ◽  
Howard M. Heys ◽  
Cecilia R. Moloney

2017 ◽  
Vol 9 (2) ◽  
pp. 38-44 ◽  
Author(s):  
Teng Guo ◽  
Jian Jiao ◽  
Feng Liu ◽  
Wen Wang

In this paper, we first follow Ateniese et al.'s work that provides upper bounds of the pixel expansion of visual cryptography schemes(VCSs) for more kinds of graph access structures, in which we require that a subset of parties can determine the secret if they contain an edge of the graph G. The constructive upper bounds are derived by the graph decomposition technique. Then we generalize Ateniese et al.'s method of comparing the optimal pixel expansion of VCSs with two different access structures.


2021 ◽  
Vol 30 (1) ◽  
pp. 816-835
Author(s):  
Firas Mohammed Aswad ◽  
Ihsan Salman ◽  
Salama A. Mostafa

Abstract Visual cryptography is a cryptographic technique that allows visual information to be encrypted so that the human optical system can perform the decryption without any cryptographic computation. The halftone visual cryptography scheme (HVCS) is a type of visual cryptography (VC) that encodes the secret image into halftone images to produce secure and meaningful shares. However, the HVC scheme has many unsolved problems, such as pixel expansion, low contrast, cross-interference problem, and difficulty in managing share images. This article aims to enhance the visual quality and avoid the problems of cross-interference and pixel expansion of the share images. It introduces a novel optimization of color halftone visual cryptography (OCHVC) scheme by using two proposed techniques: hash codebook and construction techniques. The new techniques distribute the information pixels of a secret image into a halftone cover image randomly based on a bat optimization algorithm. The results show that these techniques have enhanced security levels and make the proposed OCHVC scheme more robust against different attacks. The OCHVC scheme achieves mean squared error (MSE) of 95.0%, peak signal-to-noise ratio (PSNR) of 28.3%, normalized cross correlation (NCC) of 99.4%, and universal quality index (UQI) of 99.3% on average for the six shares. Subsequently, the experiment results based on image quality metrics show improvement in size, visual quality, and security for retrieved secret images and meaningful share images of the OCHVC scheme. Comparing the proposed OCHVC with some related works shows that the OCHVC scheme is more effective and secure.


2014 ◽  
Vol 644-650 ◽  
pp. 2108-2111 ◽  
Author(s):  
Yan Yan Ha ◽  
Shuai Ji ◽  
Wen Cai He ◽  
Yao Zhang

XOR algorithm can be used to improve the recovery effects of visual cryptography scheme. In this paper, we present a multi-secret visual cryptography scheme by using the matrices of the (k, k)-VCS. We can reveal multiple secret images perfectly by the XOR algorithm and shifting operation on the shares. The visual qualities of recovered images are ideal without any pixel expansion.


2021 ◽  
Vol 15 (2) ◽  
pp. 196-216
Author(s):  
Suhas Bhagate ◽  
Prakash J. Kulkarni

Security of information is of much concern in the modern internet era. Secret sharing schemes provide mechanism of encrypting secret information to prevent illicit usage. Visual cryptography is a secret sharing technique that facilitates encryption of a secret image. Visual cryptography allows us to effectively and efficiently share secrets among a number of trusted parties by hiding secrets within images. These images are encoded into multiple shares as per the rules indicated in basis matrices and later decoded by stacking required number of shares. Progressive visual cryptography has a specialty of recovering secret image as soon as more than one shares received gradually. Existing progressive visual cryptography schemes have severe limitations like data disclose on shares and higher pixel expansion. Improved progressive visual cryptography scheme deals with these limitations. Improved extended progressive visual cryptography scheme solves the issue of management of noise like meaningless shares by creating meaningful shares without any pixel expansion efficiently.


Sign in / Sign up

Export Citation Format

Share Document