scholarly journals A Multiagent Reinforcement Learning Solution for Geometric Configuration Optimization in Passive Location Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sengxiang Li ◽  
Haisi Li ◽  
Ke Ke ◽  
Ou Li ◽  
Guangyi Liu ◽  
...  

Passive location systems receive electromagnetic waves at one or multiple base stations to locate the transmitters, which are widely used in security fields. However, the geometric configurations of stations can greatly affect the positioning precision. In the literature, the geometry of the passive location system is mainly designed based on empirical models. These empirical models, being hard to track the sophisticated electromagnetic environment in the real world, result in suboptimal geometric configurations and low positioning precision. In order to master the characteristics of complicated electromagnetic environments to improve positioning performance, this paper proposes a novel geometry optimization method based on multiagent reinforcement learning. In the proposed method, agents learn to optimize the geometry cooperatively by factorizing team value function into agentwise value functions. To facilitate cooperation and deal with data transmission challenges, a constraint is imposed on the data sent from the central station to vice stations to ensure conciseness and effectiveness of communications. According to the empirical results under direct position determination systems, agents can find better geometric configurations than the existing methods in complicated electromagnetic environments.

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 63388-63397
Author(s):  
Shengxiang Li ◽  
Guangyi Liu ◽  
Siyuan Ding ◽  
Haisi Li ◽  
Ou Li

2020 ◽  
Author(s):  
Felipe Leno Da Silva ◽  
Anna Helena Reali Costa

Reinforcement Learning (RL) is a powerful tool that has been used to solve increasingly complex tasks. RL operates through repeated interactions of the learning agent with the environment, via trial and error. However, this learning process is extremely slow, requiring many interactions. In this thesis, we leverage previous knowledge so as to accelerate learning in multiagent RL problems. We propose knowledge reuse both from previous tasks and from other agents. Several flexible methods are introduced so that each of these two types of knowledge reuse is possible. This thesis adds important steps towards more flexible and broadly applicable multiagent transfer learning methods.


Author(s):  
Akindele Segun Afolabi ◽  
Shehu Ahmed ◽  
Olubunmi Adewale Akinola

<span lang="EN-US">Due to the increased demand for scarce wireless bandwidth, it has become insufficient to serve the network user equipment using macrocell base stations only. Network densification through the addition of low power nodes (picocell) to conventional high power nodes addresses the bandwidth dearth issue, but unfortunately introduces unwanted interference into the network which causes a reduction in throughput. This paper developed a reinforcement learning model that assisted in coordinating interference in a heterogeneous network comprising macro-cell and pico-cell base stations. The learning mechanism was derived based on Q-learning, which consisted of agent, state, action, and reward. The base station was modeled as the agent, while the state represented the condition of the user equipment in terms of Signal to Interference Plus Noise Ratio. The action was represented by the transmission power level and the reward was given in terms of throughput. Simulation results showed that the proposed Q-learning scheme improved the performances of average user equipment throughput in the network. In particular, </span><span lang="EN-US">multi-agent systems with a normal learning rate increased the throughput of associated user equipment by a whooping 212.5% compared to a macrocell-only scheme.</span>


Sign in / Sign up

Export Citation Format

Share Document