base stations
Recently Published Documents


TOTAL DOCUMENTS

2925
(FIVE YEARS 1407)

H-INDEX

56
(FIVE YEARS 22)

Author(s):  
Minhao Lyu

The decision of which base stations need to be removed due to the cost is always a difficult problem, because the influence on the cover rate of the network caused by the removal should be kept to a minimum. However, the common methods to solve this problem such as K-means Clustering show a low accuracy. Barcode, which belongs to TDA, has the possibility to show the result by identifying the Persistent Homology of base station network. This essay mainly illustrates the specific problem of optimal base station network, which applies the TDA(Topological Data Analysis) methods to find which base stations need removing due to the cost K-means Clustering and Topological Data Analysis methods were mainly used. With the simulated distribution of telecommunication users, K-means Clustering algorithm was used to locate 30 best base stations. By comparing the minimum distance between the results (K=25 and K=30), K-means Clustering was used again to decide base station points to be removed. Then TDA was used to select which 5 base stations should be removed through observing barcode. By repeating above steps five times, Finally the average and variance of cover area in original network, K-means Clustering and TDA were compared. The experiment showed that the average cover rate of original network was 81.20% while the result of TDA and K-means Clustering were 92.13% and 89.87%. It was proved by simulation that it is more efficient to use TDA methods to construct the optimal base station network.


2022 ◽  
Vol 13 (1) ◽  
pp. 187-196
Author(s):  
Ukoette Jeremiah Ekah ◽  
Chibuzo Emeruwa

It is common knowledge that the transition of mobile networks from one generation to another is basically for the improvement in the network’s Quality of Service (QoS). Bearing this in mind, we will assumme that the Universal Mobile Telecommunication System (UMTS) will outperform the Global System for Mobile Communication (GSM), hence, the motivation to conduct this study in Calabar, Nigeria, for four mobile networks; MTN, Airtel, Globacom and 9mobile. With the aid of a TEMS investigation software installed in a laptop, a measurement campaign was carried out and log files collected, with focus on Call Setup Success Rate (CSSR), Dropped Call Rate (DCR), Handover Success Rate (HOSR), Call Setup Time (CST), network coverage and network quality. The collected data was analyzed with the aid of a TEMS discovery software. The analyzed data for each Key Performance Indicator (KPI) was compared with the minimum benchmark of the telecommunications regulatory body, the Nigerian Communication Commission (NCC). Result reveal that there was no outright improvement in the QoS and there was fluctuation in the QoS provided by the network operators. We therefore conclude that the network operators, either did not make accurate planning before installing their base stations or do not optimize their networks frequently and this led to poor QoS in most cases.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 612
Author(s):  
Răzvan-George Bărtuşică ◽  
Mădălin Mihai ◽  
Simona Halunga ◽  
Octavian Fratu

This paper presents a technical solution that addresses mission-critical communications by extending the radio frequency coverage area using a flexible and scalable architecture. One of the main objectives is to improve both the reaction time and the coordination between mission-critical practitioners, also called public protection and disaster relief users, that operate in emergency scenarios. Mission-critical services such as voice and data should benefit from reliable communication systems that offer high availability, prioritization and flexible architecture. In this paper, we considered Terrestrial Trunked Radio (TETRA), the mobile radio standard used for mission-critical communications, as it has been designed in this respect and is widely used by first responder organizations. Even if RF coverage is designed before network deployment and continuously updated during the lifetime of the technology, some white areas may exist and should be covered by supplementary base stations or repeaters. The model presented in this paper is an optical repeater for TETRA standard that can offer up to 52.6 dB downlink, 65.6 dB uplink gain and up to 3.71 km coverage distance in a radiating cable installation scenario. The design in not limited, as it can be extended to several different mobile radio standards using the same principle. Flexibility and scalability attributes are taken into consideration, as they can build a cost-effective deployment considering both capital and operational expenditures.


2022 ◽  
Vol 12 (2) ◽  
pp. 670
Author(s):  
Jamshid Tursunboev ◽  
Yong-Sung Kang ◽  
Sung-Bum Huh ◽  
Dong-Woo Lim ◽  
Jae-Mo Kang ◽  
...  

Federated learning (FL) allows UAVs to collaboratively train a globally shared machine learning model while locally preserving their private data. Recently, the FL in edge-aided unmanned aerial vehicle (UAV) networks has drawn an upsurge of research interest due to a bursting increase in heterogeneous data acquired by UAVs and the need to build the global model with privacy; however, a critical issue is how to deal with the non-independent and identically distributed (non-i.i.d.) nature of heterogeneous data while ensuring the convergence of learning. To effectively address this challenging issue, this paper proposes a novel and high-performing FL scheme, namely, the hierarchical FL algorithm, for the edge-aided UAV network, which exploits the edge servers located in base stations as intermediate aggregators with employing commonly shared data. Experiment results demonstrate that the proposed hierarchical FL algorithm outperforms several baseline FL algorithms and exhibits better convergence behavior.


Author(s):  
M. I. Mohd Dzukhi ◽  
T. A. Musa ◽  
W. A. Wan Aris ◽  
A. H. Omar ◽  
I. A. Musliman

Abstract. Once the unknown integer ambiguity values are resolved, the GPS carrier phase observation will be transformed into a millimeter-level precision measurement. However, GPS observation are prone to a variety of errors, making it a biased measurement. There are two components in identifying integer ambiguities: estimation and validation. The estimation procedure aims to determine the ambiguity's integer values, and the validation step checks whether the estimated integer value is acceptable. Even though the theory and procedures for ambiguity estimates are well known, the topic of ambiguity validation is still being researched. The dependability of computed coordinates will be reduced if a false fixed solution emerges from an incorrectly estimated ambiguity integer value. In this study, the reliability of the fixed solution obtained by using several base stations in GPS positioning was investigated, and the coordinates received from these bases were compared. In a conclusion, quality control measures such as employing several base stations will improve the carrier phase measurement's accuracy.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Xu ◽  
David Anguiano Sanjurjo ◽  
Davide Colombi ◽  
Christer Törnevik

International radio frequency (RF) electromagnetic field (EMF) exposure assessment standards and regulatory bodies have developed methods and specified requirements to assess the actual maximum RF EMF exposure from radio base stations enabling massive multiple-input multiple-output (MIMO) and beamforming. Such techniques are based on the applications of power reduction factors (PRFs), which lead to more realistic, albeit conservative, exposure assessments. In this study, the actual maximum EMF exposure and the corresponding PRFs are computed for a millimeter-wave radio base station array antenna. The computed incident power densities based on near-field and far-field approaches are derived using a Monte Carlo analysis. The results show that the actual maximum exposure is well below the theoretical maximum, and the PRFs similar to those applicable for massive MIMO radio base stations operating below 6 GHz are also applicable for millimeter-wave frequencies. Despite the very low power levels that currently characterize millimeter-wave radio base stations, using the far-field approach can also guarantee the conservativeness of the PRFs used to assess the actual maximum exposure close to the antenna.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Muhammad Fayaz ◽  
Gulzar Mehmood ◽  
Ajab Khan ◽  
Sohail Abbas ◽  
Muhammad Fayaz ◽  
...  

A mobile ad hoc network (MANET) is a group of nodes constituting a network of mobile nodes without predefined and pre-established architecture where mobile nodes can communicate without any dedicated access points or base stations. In MANETs, a node may act as a host as well as a router. Nodes in the network can send and receive packets through intermediate nodes. However, the existence of malicious and selfish nodes in MANETs severely degrades network performance. The identification of such nodes in the network and their isolation from the network is a challenging problem. Therefore, in this paper, a simple reputation-based scheme is proposed which uses the consumption and contribution information for selfish node detection and cooperation enforcement. Nodes failing to cooperate are detached from the network to save resources of other nodes with good reputation. The simulation results show that our proposed scheme outperforms the benchmark scheme in terms of NRL (normalized routing load), PDF (packet delivery fraction), and packet drop in the presence of malicious and selfish attacks. Furthermore, our scheme identifies the selfish nodes quickly and accurately as compared to the benchmark scheme.


Author(s):  
Shixun Wu ◽  
Min Li ◽  
Miao Zhang ◽  
Kai Xu ◽  
Juan Cao

AbstractMobile station (MS) localization in a cellular network is appealing to both industrial community and academia, due to the wide applications of location-based services. The main challenge is the unknown one-bound (OB) and multiple-bound (MB) scattering environment in dense multipath environment. Moreover, multiple base stations (BSs) are required to be involved in the localization process, and the precise time synchronization between MS and BSs is assumed. In order to address these problems, hybrid time of arrival (TOA), angle of departure (AOD), and angle of arrival (AOA) measurement model from the serving BS with the synchronization error is investigated in this paper. In OB scattering environment, four linear least square (LLS), one quadratic programming and data fusion-based localization algorithms are proposed to eliminate the effect of the synchronization error. In addition, the Cramer-Rao lower bound (CRLB) of our localization model on the root mean-square error (RMSE) is derived. In hybrid OB and MB scattering environment, a novel double identification algorithm (DIA) is proposed to identify the MB path. Simulation results demonstrate that the proposed algorithms are capable to deal with the synchronization error, and LLS-based localization algorithms show better localization accuracy. Furthermore, the DIA can correctly identify the MB path, and the RMSE comparison of different algorithms further prove the effectiveness of the DIA.


Author(s):  
A. S. Augustine Fletcher ◽  
D. Nirmal ◽  
L. Arivazhagan ◽  
J. Ajayan ◽  
Merlin Gilbert Raj ◽  
...  
Keyword(s):  
Low Loss ◽  

Sign in / Sign up

Export Citation Format

Share Document