geometric configurations
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 73)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Zhigang Gao ◽  
Tianhu Wang ◽  
Yuxin Yang ◽  
Xiaolong Shang ◽  
Junhua Bai ◽  
...  

Abstract The issue of regenerative cooling is one of the most important key technologies of flight vehicles, which is applied into both the engine and high-power electrical equipment. One pattern of regenerative cooling channels is the microchannel heat sinks, which are thought as a prospective means of improving heat removal capacities on electrical equipment of smaller sizes. In this paper, three numerical models with different geometric configurations, namely straight, zigzag, and sinusoid respectively, are built to probe into the thermal hydraulic performance while heat transfer mechanism of supercritical methane in microchannel heat sinks for the heat removal of high-power electromechanical actuator is also explored. In addition, some crucial influence factors on heat transfer such as inlet Reynolds number, operating pressure and heating power are investigated. The calculation results imply the positive effect of wavy configurations on heat transfer and confirm the important effect of buoyancy force of supercritical methane in channels. The heat sinks with wavy channel show obvious advantages on comprehensive thermal performance including overall thermal performance parameter ? and thermal resistance R compared with that of the straight one. The highest Nu and average heat transfer coefficient am appear in the heat sink with zigzag channels, but the pumping power of the heat sink with sinusoidal channels is lower due to the smaller flow loss.


2022 ◽  
Author(s):  
Hüseyin Emre Ilgın ◽  
Markku Karjalainen ◽  
Olli-Paavo Koponen

Adhesives and metal fasteners have an important place in the content of engineered wood products (EWPs). However, adhesives may cause toxic gas emissions due to their petroleum-based nature, while metal fasteners may adversely affect the reusability of these products. These issues also raise important questions about the sustainability and environmental friendliness of EWPs. Thus, there is still room for a solution that is solid and completely pure wood, adhesive- and metal-connectors-free dovetail wood board elements (DWBEs). There are many studies on the technological, ecological, and economic aspects of these products in the literature, but no studies have been conducted to assess the technical performance of DWBEs. This chapter focuses on DWBEs by proposing various geometric configurations for horizontal structural members in multistory building construction through architectural modeling programs. In this architectural design phase, which is one of the first but most important stages, the proposed configurations are based on a theoretical approach, considering contemporary construction practices rather than structural analysis or mechanical simulation. Further research, including technical performance tests, will be undertaken after this critical phase. It is believed that this chapter will contribute to the dissemination of DWBEs for innovative architectural and structural applications, especially in multistory wooden structures construction.


2022 ◽  
Vol 10 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi

When it comes to engineering, high performance is always a desired goal. In this context, regarding stiffened plates, the search for better geometric configurations able to minimize the out-of-plane displacements become interesting. So, this study aimed to analyze several stiffened plates defined by the Constructal Design Method (CDM) and solved through the Finite Element Method (FEM) using the ANSYS® software. After that, these plates are compared among each other through the Exhaustive Search (ES) technique. To do so, a non-stiffened rectangular plate was adopted as reference. Then, a portion of its steel volume was converted into stiffeners through the ϕ parameter, which represents the ratio between the volume of the stiffeners and the total volume of the reference plate. Taking into consideration the value of ϕ = 0.3, 75 different stiffened plates arrangements were proposed: 25 with rectangular stiffeners oriented at 0°; 25 with rectangular stiffeners oriented at 45° and 25 with trapezoidal stiffeners oriented at 0°. Maintaining the total volume of material constant, it was investigated the geometry influence on the maximum deflection of these stiffened plates. The results have shown trapezoidal stiffeners oriented at 0° are more effective to reduce the maximum deflections than rectangular stiffeners also oriented at 0°. It was also observed that rectangular stiffeners oriented at 45° presented the smallest maximum deflections for the majority of the analyzed cases, when compared to the trapezoidal and rectangular stiffeners oriented at 0°.


2022 ◽  
pp. 1-1
Author(s):  
Weidong Zhang ◽  
Hong Chiang ◽  
Te Wen ◽  
Lulu Ye ◽  
Hai Lin ◽  
...  

2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
M C Xu ◽  
C Guedes Soares

This study aims at studying different configurations of the stiffened panels in order to identify robust configurations that would not be much sensitive to the imprecision in boundary conditions that can exist in experimental set ups. A numerical study is conducted to analyze the influence of the stiffener’s geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compression. The stiffened panels with different combinations of mechanical material properties and geometric configurations are considered. The four types of stiffened panels analysed are made of mild or high tensile steel and have bar, ‘L’ and ‘U’ stiffeners. To understand the effect of finite element modelling on the ultimate strength of the stiffened panels, four types of FE models are investigated in FE analysis including 3 bays, 1/2+1+1/2 bays, 1+1 bays and 1 bay with different boundary conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jannik Janßen ◽  
Heiner Kuhlmann ◽  
Christoph Holst

Abstract In almost all projects, in which terrestrial laser scanning is used, the scans must be registered after the data acquisition. Despite more and more new and automated methods for registration, the classical target-based registration is still one of the standard procedures. The advantages are obvious: independence from the scan object, the geometric configuration can often be influenced and registration results are easy to interpret. When plane black-and-white targets are used, the algorithm for estimating the target center fits a plane through the scan of a target, anyway. This information about the plane orientation has remained unused so far. Hence, including this information in the registration does not require any additional effort in the scanning process. In this paper, we extend the target-based registration by the plane orientation. We describe the required methodology, analyze the benefits in terms of precision and reliability and discuss in which cases the extension is useful and brings a relevant advantage. Based on simulations and two case studies we find out that especially for registrations with bad geometric configurations the extension brings a big advantage. The extension enables registrations that are much more precise. These are also visible on the registered point clouds. Thus, only a methodological change in the target-based registration improves its results.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7331
Author(s):  
Anna Kamenskikh ◽  
Alex G. Kuchumov ◽  
Inessa Baradina

This study carried out modeling of the contact between a pair of antagonist teeth with/without individual mouthguards with different geometric configurations. Comparisons of the stress–strain state of teeth interacting through a multilayer mouthguard EVA and multilayer mouthguards with an A-silicon interlayer were performed. The influence of the intermediate layer geometry of A-silicone in a multilayer mouthguard with an A-silicon interlayer on the stress–strain state of the human dentition was considered. The teeth geometry was obtained by computed tomography data and patient dental impressions. The contact 2D problem had a constant thickness, frictional contact deformation, and large deformations in the mouthguard. The strain–stress analysis of the biomechanical model was performed by elastoplastic stress–strain theory. Four geometric configurations of the mouthguard were considered within a wide range of functional loads varied from 50 to 300 N. The stress–strain distributions in a teeth pair during contact interaction at different levels of the physiological loads were obtained. The dependences of the maximum level of stress intensity and the plastic deformation intensity were established, and the contact parameters near the occlusion zone were considered. It was found that when using a multilayer mouthguard with an A-silicone interlayer, there is a significant decrease in the stress intensity level in the hard tissues of the teeth, more than eight and four times for the teeth of the upper and lower teeth, respectively.


2021 ◽  
Vol 11 (22) ◽  
pp. 10580
Author(s):  
Luis A. Gallo ◽  
Edwin L. Chica ◽  
Elkin G. Flórez ◽  
Felipe A. Obando

In the present study, the implementation of multi-blade profiles in a Savonius rotor was evaluated in order to increase the pressure in the blade’s intrados and, thus, decrease motion resistance. The geometric proportions of the secondary element were determined, which maximized the rotor’s performance. For this, the response surface methodology was used through a full factorial experimental design and a face-centered central composite design, consisting of three factors, each with three levels. The response variable that was sought to be maximized was the power coefficient (CP), which was obtained through the numerical simulation of the geometric configurations resulting from the different treatments. All geometries were studied under the same parameters and computational fluid dynamics models through the ANSYS Fluent software. The results obtained through both experimental designs showed a difference of only 1.06% in the performance estimates using the regression model and 3.41% when simulating the optimal proportions geometries. The optimized geometry was characterized by a CP of 0.2948, which constitutes an increase of 10.8% in its performance compared to the profile without secondary elements and of 51.2% compared to the conventional semicircular profile. The numerical results were contrasted with experimental data obtained using a wind tunnel, revealing a good degree of fit.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012070
Author(s):  
Hugo Aya Baquero

Abstract This model consists of a periodic structure formed by solid beams equidistant from each other submerged in a fluid. The beams are clamped at both ends. The distance between the beams, the elastic properties of the solid and the fluid; and the geometric parameters of the beams determine a relationship between the frequencies of the mechanical waves that can propagate through the structure and the wave vector. Analysis within the first Brillouin zone with the Bloch periodicity condition gives rise to frequency bands in which there is the propagation of mechanical waves and bands in which no waves are propagated. Some propagation bands and forbidden regions were found in the examined frequency ranges for various geometric configurations.


Optik ◽  
2021 ◽  
pp. 168387
Author(s):  
K Keerthi ◽  
Sajan D George ◽  
Rajesh Nayak ◽  
Santhosh Chidangil ◽  
V K Unnikrishnan

Sign in / Sign up

Export Citation Format

Share Document