The Hecke Group
H
λ
4
Acting on Imaginary Quadratic Number Fields
Let H λ 4 be the Hecke group x , y : x 2 = y 4 = 1 and, for a square-free positive integer n , consider the subset ℚ ∗ − n = a + − n / c | a , b = a 2 + n / c ∈ ℤ , c ∈ 2 ℤ of the quadratic imaginary number field ℚ − n . Following a line of research in the relevant literature, we study the properties of the action of H λ 4 on ℚ ∗ − n . In particular, we calculate the number of orbits arising from this action for every such n . Some illustrative examples are also given.