direct calculations
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 153 (A4) ◽  
Author(s):  
P D Contraros ◽  
S P Phokas

This is the first of a series of companion papers that the authors propose to present on the effect that the new CSR Rules will have on the design of bulk carriers. Our initial focus will be on the new design framework established for the inner bottom height of such vessels, a parameter critical to their structural integrity. It examines the effect that double bottom height reduction has on the reliability of the bulk carrier structure, by applying a finite element 3D - 3 hold analysis of varying double bottom heights to a typical current Panamax bulk carrier design. The results are compared to pre and post IACS CSR[2] requirements. The conclusion reached is that the establishing of the double bottom height should not be left to direct calculations. A minimum acceptable height should be established in order to maintain a minimum level of structural reliability and safety.


2021 ◽  
pp. 278-286
Author(s):  
A.N. Novigatsky ◽  
◽  
A.P. Lisitzin ◽  
V.P. Shevchenko ◽  
A.A. Klyuvitkin ◽  
...  

The monthly, seasonal and annual quantity estimates of vertical fluxes of sedimentary matter from the surface layer of the Arctic Ocean, performed out over the years by various researchers, are the basis for direct calculations of incoming chemical components, minerals, and various pollutants to the surface layer of bottom sediments.


2021 ◽  
pp. 2150074
Author(s):  
Koichi Tojo

For a homogeneous space [Formula: see text] of reductive type, we consider the tangential homogeneous space [Formula: see text]. In this paper, we give obstructions to the existence of compact Clifford–Klein forms for such tangential symmetric spaces and obtain new tangential symmetric spaces which do not admit compact Clifford–Klein forms. As a result, in the class of irreducible classical semisimple symmetric spaces, we have only two types of symmetric spaces which are not proved not to admit compact Clifford–Klein forms. The existence problem of compact Clifford–Klein forms for homogeneous spaces of reductive type, which was initiated by Kobayashi in 1980s, has been studied by various methods but is not completely solved yet. On the other hand, the one for tangential homogeneous spaces has been studied since 2000s and an analogous criterion was proved by Kobayashi and Yoshino. In concrete examples, further works are needed to verify Kobayashi–Yoshino’s condition by direct calculations. In this paper, some easy-to-check necessary conditions ([Formula: see text][Formula: see text]obstructions) for the existence of compact quotients in the tangential setting are given, and they are applied to the case of symmetric spaces. The conditions are related to various fields of mathematics such as associated pair of symmetric space, Calabi–Markus phenomenon, trivializability of vector bundle (parallelizability, Pontrjagin class), Hurwitz–Radon number and Pfister’s theorem (the existence problem of common zero points of polynomials of odd degree).


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 580
Author(s):  
Dipayan Roy ◽  
R. Torsten Clay ◽  
Sumit Mazumdar

In the most studied family of organic superconductors κ-(BEDT-TTF)2X, the BEDT-TTF molecules that make up the conducting planes are coupled as dimers. For some anions X, an antiferromagnetic insulator is found at low temperatures adjacent to superconductivity. With an average of one hole carrier per dimer, the BEDT-TTF band is effectively 12-filled. Numerous theories have suggested that fluctuations of the magnetic order can drive superconducting pairing in these models, even as direct calculations of superconducting pairing in monomer 12-filled band models find no superconductivity. Here, we present accurate zero-temperature Density Matrix Renormalization Group (DMRG) calculations of a dimerized lattice with one hole per dimer. While we do find an antiferromagnetic state in our results, we find no evidence for superconducting pairing. This further demonstrates that magnetic fluctuations in the effective 12-filled band approach do not drive superconductivity in these and related materials.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2798
Author(s):  
Konstanty M. Gawrylczyk ◽  
Szymon Banaszak

The paper provides a review of the modelling techniques used to simulate the frequency response of transformer windings. The aim of the research and development of modelling methods was to analyze the influence of deformations and faults in the windings on the changes in the frequency response. All described methods are given with examples of the modelling results performed by the authors of this paper and from literature sources. The research is prefaced with a thorough literature review. There are described models based on lumped parameters with input data coming from direct calculations based on the winding geometry and obtained from FEM modelling software and models considering the wave phenomena in the windings. The analysis was also performed for practical problems in winding modelling: the influence of windings other than the modelled one and the influence of parallel wires in a winding.


Author(s):  
Kenji Sugisaki ◽  
Kazuo Toyota ◽  
Kazunobu Sato ◽  
Daisuke Shiomi ◽  
Takeji Takui

2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1213-1240
Author(s):  
Nganyang Paul Bayendang ◽  
◽  
Mohamed Tariq Kahn ◽  
Vipin Balyan

<abstract> <p>Energy sustainability is becoming paramount today with the focus being on renewable and alternative energy. This manuscript therefore embarks on clean alternative energy rooted in thermoelectricity with focus on thermoelectric generator (TEG). However, a TEG do practically needs heat-exchangers or heatsinks to properly and reliably work but heatsinks present another problem—thermal resistance, which affects a TEG power output and efficiency and thus, must be addressed. Consequently, we investigate a TEG with heatsinks model based-on dimensional analysis using Matlab and Simulink. Our research has three unique contributions. Firstly, we derived the analytical formulas for direct calculations of TEG dimensionless hot and cold sides temperature and by introducing and applying a new dimensionless parameter, the dimensionless temperature difference (<italic>DT<sub>s</sub></italic>). Secondly, we simplified further the new TEG dimensionless hot and cold sides temperature analytical formulas to obtain simpler and simplest forms. Thirdly, we implemented a TEG with heatsinks Matlab/Simulink theoretical model, that employs the simplified dimensional analysis, in which a TEG with heatsinks parameters of interest can be simulated to variously determine the analytical, numerical and graphical results with various optimal options to opt for, before doing a practical design.</p> </abstract>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kenta Shiozawa ◽  
Shin Sasaki

Abstract We study world-volume effective theories of five-branes in type II string theories. We determine the bosonic zero-modes of the NS5-brane, the Kaluza-Klein monopole, the exotic Q5-, R5-branes and a space-filling brane, by direct calculations within the formalism of double field theory (DFT). We show that these zero-modes are Nambu-Goldstone modes associated with the spontaneously broken gauge symmetries in DFT. They are organized into the bosonic part of the six-dimensional $$ \mathcal{N} $$ N = (1) vector and the $$ \mathcal{N} $$ N = (2, 0) tensor multiplets. Among other things, we examine the locally non-geometric R5-branes and space-filling branes that are characterized by the winding space. We also study effective theories of five-branes with string worldsheet instanton corrections.


2020 ◽  
Vol 57 (4) ◽  
pp. 1029-1044
Author(s):  
Svante Janson

AbstractConsider a Pólya urn with balls of several colours, where balls are drawn sequentially and each drawn ball is immediately replaced together with a fixed number of balls of the same colour. It is well known that the proportions of balls of the different colours converge in distribution to a Dirichlet distribution. We show that the rate of convergence is $\Theta(1/n)$ in the minimal $L_p$ metric for any $p\in[1,\infty]$, extending a result by Goldstein and Reinert; we further show the same rate for the Lévy distance, while the rate for the Kolmogorov distance depends on the parameters, i.e. on the initial composition of the urn. The method used here differs from the one used by Goldstein and Reinert, and uses direct calculations based on the known exact distributions.


Sign in / Sign up

Export Citation Format

Share Document