scholarly journals New schemes for a two-dimensional inverse problem with temperature overspecification

2001 ◽  
Vol 7 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Mehdi Dehghan

Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3) alternating direction implicit (ADI) finite difference scheme and the (3,9) alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU) times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

2019 ◽  
Vol 34 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Gayaz S. Khakimzyanov ◽  
Zinaida I. Fedotova ◽  
Oleg I. Gusev ◽  
Nina Yu. Shokina

Abstract Basic properties of some finite difference schemes for two-dimensional nonlinear dispersive equations for hydrodynamics of surface waves are considered. It is shown that stability conditions for difference schemes of shallow water equations are qualitatively different in the cases the dispersion is taken into account, or not. The difference in the behavior of phase errors in one- and two-dimensional cases is pointed out. Special attention is paid to the numerical algorithm based on the splitting of the original system of equations into a nonlinear hyperbolic system and a scalar linear equation of elliptic type.


Sign in / Sign up

Export Citation Format

Share Document