compact finite difference
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 74)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ravneet Kaur ◽  
Shallu ◽  
Sachin Kumar ◽  
V. K. Kukreja

In this work, computational analysis of generalized Burger’s-Fisher and generalized Burger’s-Huxley equation is carried out using the sixth-order compact finite difference method. This technique deals with the nonstandard discretization of the spatial derivatives and optimized time integration using the strong stability-preserving Runge-Kutta method. This scheme inculcates four stages and third-order accuracy in the time domain. The stability analysis is discussed using eigenvalues of the coefficient matrix. Several examples are discussed for their approximate solution, and comparisons are made to show the efficiency and accuracy of CFDM6 with the results available in the literature. It is found that the present method is easy to implement with less computational effort and is highly accurate also.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2508
Author(s):  
Jesús Amo-Navarro ◽  
Ricardo Vinuesa ◽  
J. Alberto Conejero ◽  
Sergio Hoyas

In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary conditions emerges when transforming the Navier–Stokes equations to the vorticity–velocity formulation. In the case of problems with a periodic direction, the problem can be transformed into multiple, independent, two-dimensional fourth-order elliptic problems. An efficient method to solve these two-dimensional bi-Laplacian operators with Neumann homogeneus boundary conditions was designed and validated using 2D compact finite difference schemes. The solution is formulated as a linear combination of auxiliary solutions, as many as the number of points on the boundary, a method that was prohibitive some years ago due to the large memory requirements to store all these auxiliary functions. The validation has been made for different field configurations, grid sizes, and stencils of the numerical scheme, showing its potential to tackle high gradient fields as those that can be found in turbulent flows.


Author(s):  
Mahboubeh Molavi-Arabshahi ◽  
Zahra Saeidi

In this paper, the compact finite difference scheme as unconditionally stable method is applied to some type of fractional derivative equation. We intend to solve with this scheme two kinds of a fractional derivative, first a fractional order system of Granwald-Letnikov type 1 for influenza and second fractional reaction sub diffusion equation. Also, we analyzed the stability of equilibrium points of this system. The convergence of the compact finite difference scheme in norm 2 are proved. Finally, various cases are used to test the numerical method. In comparison to other existing numerical methods, our results show that the scheme yields an accurate solution that is quick to compute.


Author(s):  
Shufang Hu ◽  
Wenlin Qiu ◽  
Hongbin Chen

Abstract A predictor–corrector compact finite difference scheme is proposed for a nonlinear partial integro-differential equation. In our method, the time direction is approximated by backward Euler scheme and the Riemann–Liouville (R–L) fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, a two-step predictor–corrector (P–C) algorithm called MacCormack method is used. A fully discrete scheme is constructed with space discretization by compact finite difference method. Numerical experiment presents the scheme is in good agreement with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document