scholarly journals Linear programming with positive semi-definite matrices

1996 ◽  
Vol 2 (6) ◽  
pp. 499-522 ◽  
Author(s):  
J. B. Lasserre

We consider the general linear programming problem over the cone of positive semi-definite matrices. We first provide a simple sufficient condition for existence of optimal solutions and absence of a duality gap without requiring existence of a strictly feasible solution. We then simply characterize the analogues of the standard concepts of linear programming, i.e., extreme points, basis, reduced cost, degeneracy, pivoting step as well as a Simplex-like algorithm.

2004 ◽  
Vol 21 (01) ◽  
pp. 127-139 ◽  
Author(s):  
G. R. JAHANSHAHLOO ◽  
F. HOSSEINZADEH LOTFI ◽  
N. SHOJA ◽  
G. TOHIDI

In this paper, a method using the concept of l1-norm is proposed to find all the efficient solutions of a 0-1 Multi-Objective Linear Programming (MOLP) problem. These solutions are specified without generating all feasible solutions. Corresponding to a feasible solution of a 0-1 MOLP problem, a vector is constructed, the components of which are the values of objective functions. The method consists of a one-stage algorithm. In each iteration of this algorithm a 0-1 single objective linear programming problem is solved. We have proved that optimal solutions of this 0-1 single objective linear programming problem are efficient solutions of the 0-1 MOLP problem. Corresponding to efficient solutions which are obtained in an iteration, some constraints are added to the 0-1 single objective linear programming problem of the next iteration. Using a theorem we guarantee that the proposed algorithm generates all the efficient solutions of the 0-1 MOLP problem. Numerical results are presented for an example taken from the literature to illustrate the proposed algorithm.


Author(s):  
Bhabani Mallia ◽  
Manjula Das ◽  
C. Das

Transportation Problem is a linear programming problem. Like LPP, transportation problem has basic feasible solution (BFS) and then from it we obtain the optimal solution. Among these BFS the optimal solution is developed by constructing dual of the TP. By using complimentary slackness conditions the optimal solutions is obtained by the same iterative principle. The method is known as MODI (Modified Distribution) method. In this paper we have discussed all the aspect of transportation problem.


2018 ◽  
Vol 23 (1) ◽  
pp. 11-18
Author(s):  
Vasile Căruțașu

Abstract A number of methods and techniques for determining “effective” solutions for multiple objective linear programming problems (MPP) have been developed. In this study, we will present two simple methods for determining an efficient solution for a MPP that reducing the given problem to a one-objective linear programming problem. One of these methods falls under the category of methods of weighted metrics, and the other is an approach similar to the ε- constraint method. The solutions determined by the two methods are not only effective and are found on the Pareto frontier, but are also “the best” in terms of distance to the optimal solutions for all objective function from the MPP. Obviously, besides the optimal solutions of linear programming problems in which we take each objective function, we can also consider the ideal point and Nadir point, in order to take into account all the notions that have been introduced to provide a solution to this problem


Author(s):  
Elsayed Metwalli Badr ◽  
Mustafa Abdul Salam ◽  
Florentin Smarandache

The neutrosophic primal simplex algorithm starts from a neutrosophic basic feasible solution. If there is no such a solution, we cannot apply the neutrosophic primal simplex method for solving the neutrosophic linear programming problem. In this chapter, the authors propose a neutrosophic two-phase method involving neutrosophic artificial variables to obtain an initial neutrosophic basic feasible solution to a slightly modified set of constraints. Then the neutrosophic primal simplex method is used to eliminate the neutrosophic artificial variables and to solve the original problem.


2018 ◽  
Vol 10 (5) ◽  
pp. 60
Author(s):  
Muhammad Hanif ◽  
Farzana Sultana Rafi

The several standard and the existing proposed methods for optimality of transportation problems in linear programming problem are available. In this paper, we considered all standard and existing proposed methods and then we proposed a new method for optimal solution of transportation problems. The most attractive feature of this method is that it requires very simple arithmetical and logical calculation, that’s why it is very easy even for layman to understand and use. Some limitations and recommendations of future works are also mentioned of the proposed method. Several numerical examples have been illustrated, those gives the clear idea about the method. A programming code for this method has been written in Appendix of the paper.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 885
Author(s):  
Hsien-Chung Wu

The uncertainty for the continuous-time linear programming problem with time-dependent matrices is considered in this paper. In this case, the robust counterpart of the continuous-time linear programming problem is introduced. In order to solve the robust counterpart, it will be transformed into the conventional form of the continuous-time linear programming problem with time-dependent matrices. The discretization problem is formulated for the sake of numerically calculating the ϵ-optimal solutions, and a computational procedure is also designed to achieve this purpose.


Sign in / Sign up

Export Citation Format

Share Document