scholarly journals Robust Solutions for Uncertain Continuous-Time Linear Programming Problems with Time-Dependent Matrices

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 885
Author(s):  
Hsien-Chung Wu

The uncertainty for the continuous-time linear programming problem with time-dependent matrices is considered in this paper. In this case, the robust counterpart of the continuous-time linear programming problem is introduced. In order to solve the robust counterpart, it will be transformed into the conventional form of the continuous-time linear programming problem with time-dependent matrices. The discretization problem is formulated for the sake of numerically calculating the ϵ-optimal solutions, and a computational procedure is also designed to achieve this purpose.

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 435
Author(s):  
Hsien-Chung Wu

A robust continuous-time linear programming problem is formulated and solved numerically in this paper. The data occurring in the continuous-time linear programming problem are assumed to be uncertain. In this paper, the uncertainty is treated by following the concept of robust optimization, which has been extensively studied recently. We introduce the robust counterpart of the continuous-time linear programming problem. In order to solve this robust counterpart, a discretization problem is formulated and solved to obtain the ϵ -optimal solution. The important contribution of this paper is to locate the error bound between the optimal solution and ϵ -optimal solution.


2018 ◽  
Vol 23 (1) ◽  
pp. 11-18
Author(s):  
Vasile Căruțașu

Abstract A number of methods and techniques for determining “effective” solutions for multiple objective linear programming problems (MPP) have been developed. In this study, we will present two simple methods for determining an efficient solution for a MPP that reducing the given problem to a one-objective linear programming problem. One of these methods falls under the category of methods of weighted metrics, and the other is an approach similar to the ε- constraint method. The solutions determined by the two methods are not only effective and are found on the Pareto frontier, but are also “the best” in terms of distance to the optimal solutions for all objective function from the MPP. Obviously, besides the optimal solutions of linear programming problems in which we take each objective function, we can also consider the ideal point and Nadir point, in order to take into account all the notions that have been introduced to provide a solution to this problem


Author(s):  
Rasha Jalal

The aim of this paper is to suggest a solution procedure to fractional programming problem based on new ranking function (RF) with triangular fuzzy number (TFN) based on alpha cuts sets of fuzzy numbers. In the present procedure the linear fractional programming (LFP) problems is converted into linear programming problems. We concentrate on linear programming problem problems in which the coefficients of objective function are fuzzy numbers, the right- hand side are fuzzy numbers too, then solving these linear programming problems by using a new ranking function. The obtained linear programming problem can be solved using win QSB program (simplex method) which yields an optimal solution of the linear fractional programming problem. Illustrated examples and comparisons with previous approaches are included to evince the feasibility of the proposed approach.


2020 ◽  
Vol 10 (2) ◽  
pp. 145-157
Author(s):  
Davood Darvishi Salookolaei ◽  
Seyed Hadi Nasseri

PurposeFor extending the common definitions and concepts of grey system theory to the optimization subject, a dual problem is proposed for the primal grey linear programming problem.Design/methodology/approachThe authors discuss the solution concepts of primal and dual of grey linear programming problems without converting them to classical linear programming problems. A numerical example is provided to illustrate the theory developed.FindingsBy using arithmetic operations between interval grey numbers, the authors prove the complementary slackness theorem for grey linear programming problem and the associated dual problem.Originality/valueComplementary slackness theorem for grey linear programming is first presented and proven. After that, a dual simplex method in grey environment is introduced and then some useful concepts are presented.


Author(s):  
Sanjay Jain ◽  
Adarsh Mangal

In this research paper, an effort has been made to solve each linear objective function involved in the Multi-objective Linear Programming Problem (MOLPP) under consideration by AHA simplex algorithm and then the MOLPP is converted into a single LPP by using various techniques and then the solution of LPP thus formed is recovered by Gauss elimination technique. MOLPP is concerned with the linear programming problems of maximizing or minimizing, the linear objective function having more than one objective along with subject to a set of constraints having linear inequalities in nature. Modeling of Gauss elimination technique of inequalities is derived for numerical solution of linear programming problem by using concept of bounds. The method is quite useful because the calculations involved are simple as compared to other existing methods and takes least time. The same has been illustrated by a numerical example for each technique discussed here.


2004 ◽  
Vol 21 (01) ◽  
pp. 127-139 ◽  
Author(s):  
G. R. JAHANSHAHLOO ◽  
F. HOSSEINZADEH LOTFI ◽  
N. SHOJA ◽  
G. TOHIDI

In this paper, a method using the concept of l1-norm is proposed to find all the efficient solutions of a 0-1 Multi-Objective Linear Programming (MOLP) problem. These solutions are specified without generating all feasible solutions. Corresponding to a feasible solution of a 0-1 MOLP problem, a vector is constructed, the components of which are the values of objective functions. The method consists of a one-stage algorithm. In each iteration of this algorithm a 0-1 single objective linear programming problem is solved. We have proved that optimal solutions of this 0-1 single objective linear programming problem are efficient solutions of the 0-1 MOLP problem. Corresponding to efficient solutions which are obtained in an iteration, some constraints are added to the 0-1 single objective linear programming problem of the next iteration. Using a theorem we guarantee that the proposed algorithm generates all the efficient solutions of the 0-1 MOLP problem. Numerical results are presented for an example taken from the literature to illustrate the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document