scholarly journals Early Fluorescence in situ Hybridization Assessment during Acute Myeloid Leukemia Induction Chemotherapy

2018 ◽  
Vol 139 (3) ◽  
pp. 171-175
Author(s):  
Robert Schneidewend ◽  
Paul Hosking ◽  
Ruta Brazauskas ◽  
Jess Peterson ◽  
Carlie Beaudin ◽  
...  
Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3330-3334 ◽  
Author(s):  
Wa'el El-Rifai ◽  
Tapani Ruutu ◽  
Erkki Elonen ◽  
Liisa Volin ◽  
Sakari Knuutila

Abstract The presence of residual leukemic cells was studied using metaphase-fluorescence in situ hybridization (FISH) in 22 patients with acute myeloid leukemia treated with chemotherapy only or chemotherapy followed by allogeneic bone marrow transplantation. The patients were followed up during their complete remission (CR) for 4 to 108 months (median, 21 months). A total of 88 BM samples was studied. In most of the samples more than 1,000 metaphase cells were analyzed. Residual leukemic cells were detected in 9 of 22 patients (41%). All patients who had an increasing and/or persisting level of abnormal cells in two or more subsequent samples or whose initial samples contained more than 1% of abnormal cells relapsed with one exception, in whom the later subsequent samples showed disappearance of abnormal cells. The time span before the first positive sample seems to be insignificant with regard to the outcome of relapse. Absence or single occurrence of abnormal cells followed by their disappearance was in agreement with CR in all the cases (16 patients). Our results indicate that metaphase-FISH is a reliable tool in the quantitation of residual leukemic cells and provides valuable prognostic information for patients with AML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4504-4504
Author(s):  
Jianyong Li ◽  
Jinlan Pan ◽  
Bing Xiao ◽  
Li Ma ◽  
Hairong Qiu ◽  
...  

Abstract The complex chromosome abnormalities (CCAs) were one of the most important poor prognostic risk factors in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Chromosome analysis using classical cytogenetic banding techniques fails to completely resolve complex karyotypes and cryptic translocations. The technique of multiplex fluorescence in situ hybridization (M-FISH) allow for the simultaneous visualization of all chromosomes of a metaphase in a single hybridization step and thereby enable to comprehensively analyze complex karyotypes and the identification of new and cryptic translocations. To investigate the value of M-FISH in the detection of complex karyotypic abnormalities of AML and MDS. M-FISH was used in combination with interphase-FISH to study 24 cases of AML and MDS with CCAs showed by R-banding of conventional cytogenetics (CC). In 14 cases of AML with CCAs, 4 gains of whole chromosome and 4 losses of whole chromosome were confirmed by M-FISH, while 12 losses of whole chromosome were revised as derivative chromosomes resulted from various structural aberrations. 26 derivative chromosomes and 19 marker chromosomes were characterized precisely by M-FISH. Most of them were unbalanced translocations, including 2 complex t(8;21), which have not been previously described:t(8;21), der(8) t(8;21) (8pter→8q22::21q22→21qter), der(21) t(8;21;8) (8qter→ 8q22::21p13→ 21q22::8q22→ 8qter) and t(21;8;18;1), der(8) t(8;21) (8pter→ 8q22::21q22→ 21qter), der(21) t(21;8;18;1) (21p13→ 21q22::8q22→ 8q24::18?::1q?q?). In 10 cases of MDS, 37 kinds of structural rearrangements were detected by M-FISH including insertion, deletion, translocation and derivative chromosomes, and among them 34 kinds were unbalanced rearrangements, only 3 were balanced rearrangements including t(6;22)(q21;q12), t(9;19)(q13;p13) and t(3;5)( ?;?), 7 abnormalities were never reported before. The CCAs invloved nearly all chromosomes, of which the chromosome 17, 5 and 7 were invloved more frequent than the rest. Chromosomes 5, 17, 7 were involved in 15 cases (62.5%), 12 cases (50%) and 6 cases (25%) respecrively. We conclude that M-FISH could refine CCAs of AML and MDS patients, find or correct the missed or misidentified aberrations by CC analysis. Our findings confirm that M-FISH is a powerful tool to characterize complex karyotypes in AML and MDS.


2017 ◽  
Vol 56 (8) ◽  
pp. 632-638
Author(s):  
Nadine Sandhöfer ◽  
Klaus H. Metzeler ◽  
Purvi M. Kakadia ◽  
Zlatana Pasalic ◽  
Wolfgang Hiddemann ◽  
...  

2018 ◽  
Vol 149 (5) ◽  
pp. 418-424 ◽  
Author(s):  
Ferrin C Wheeler ◽  
Annette S Kim ◽  
Claudio A Mosse ◽  
Aaron C Shaver ◽  
Ashwini Yenamandra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document