scholarly journals Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery.

1990 ◽  
Vol 66 (3) ◽  
pp. 789-803 ◽  
Author(s):  
T Anno ◽  
L M Hondeghem
Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Rengasayee Veeraraghavan ◽  
Joyce T Lin ◽  
James P Keener ◽  
Steven Poelzing ◽  
Robert G Gourdie

Pore-forming (Nav1.5) and auxiliary (β1; SCN1b) subunits of cardiac sodium channels are enriched at the cardiomyocyte intercalated disk (ID). Mathematical models suggest that this may facilitate conduction via ephaptic mechanisms. We recently demonstrated Nav1.5 enrichment (gSTED superresolution microscopy) and close membrane apposition (<10 nm; electron microscopy) within the perinexus, a microdomain surrounding connexin43 (Cx43) gap junctions (GJ). These data identified the perinexus as a candidate structure for the cardiac ephapse. Further studies using gSTED and STORM superresolution microscopy revealed Nav1.5 and β1 enrichment within ID regions not containing dense clusters of Cx43 and N-Cadherin. Notably, both were identified within the perinexus: Overall, 22% of Nav1.5 & β1 were located within perinexal regions while only 2 and 5% respectively overlapped with Cx43 clusters. Importantly, acute interstitial edema (AIE) increased intermembrane distance at perinexal, but not at non-perinexal sites in adult guinea pig myocardium. Functionally, this correlated with decreased transverse conduction velocity (CV-T; 15.2±0.3 vs. 19.6±0.1cm/s) and increased anisotropic ratio (AR; 3.0±0.2 vs. 2.8±0.1) relative to control, in perfused guinea pig ventricles. Nav1.5 blockade (0.5 μM flecainide) by itself decreased CV (18%) without changing AR. However, Nav1.5 inhibition during AIE preferentially decreased CV-T (13.0±0.6cm/s), increased AR (3.3±0.2) and increased spontaneous arrhythmias (7/9 vs. 4/11) compared to AIE alone. Notably, only a computer model including ephaptic coupling and the ID localization of Nav1.5 could recapitulate these results. Next we investigated the role of β1 in ephaptic coupling: Electrical cell-substrate impedance spectroscopy of 1610 cells heterologously overexpressing β1 revealed 3-fold higher paracellular resistance relative to native 1610 cells. These data along with the known cell adhesion function of β1 in neural tissue suggest that β1-mediated adhesion may facilitate close membrane apposition within the perinexus. Taken together, our results identify β1-mediated adhesion as a novel determinant of anisotropic conduction and potential antiarrhythmic target.


Circulation ◽  
1995 ◽  
Vol 92 (10) ◽  
pp. 3014-3024 ◽  
Author(s):  
Carmen Valenzuela ◽  
Dirk J. Snyders ◽  
Paul B. Bennett ◽  
Juan Tamargo ◽  
Luc M. Hondeghem

1992 ◽  
Vol 58 ◽  
pp. 278
Author(s):  
Tatsuya Mori ◽  
Eiichi Watanabe ◽  
Takafumi Anno ◽  
Junji Toyama

2001 ◽  
Vol 117 (6) ◽  
pp. 505-518 ◽  
Author(s):  
Haijun Chen ◽  
Stefan H. Heinemann

The effects of the scorpion α-toxins Lqh II, Lqh III, and LqhαIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC50 values of &lt;2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhαIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II and LqhαIT, such that Lqh III would not dissociate from the channel during a cardiac activation potential. The voltage dependence of toxin dissociation from hH1 channels was nearly the same for all toxins tested, but it was different from that found for skeletal muscle sodium channels (μI; Chen et al. 2000). These results indicate that the voltage dependence of toxin binding is a property of the channel protein. Toxin dissociation remained voltage dependent even at high voltages where activation and fast inactivation is saturated, indicating that the voltage dependence originates from other sources. Slow inactivation of hH1 and μI channels was significantly enhanced by Lqh II and Lqh III. The half-maximal voltage of steady-state slow inactivation was shifted to negative values, the voltage dependence was increased, and, in particular for hH1, slow inactivation at high voltages became more complete. This effect exceeded an expected augmentation of slow inactivation owing to the loss of fast inactivation and, therefore, shows that slow sodium channel inactivation may be directly modulated by scorpion α-toxins.


1992 ◽  
Vol 214 (2-3) ◽  
pp. 191-197 ◽  
Author(s):  
Jun-ichi Nitta ◽  
Akihiko Sunami ◽  
Fumiaki Marumo ◽  
Masayasu Hiraoka

Sign in / Sign up

Export Citation Format

Share Document