intercalated disk
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mathieu Pernot ◽  
Béatrice Jaspard-vinassa ◽  
Alice Abelanet ◽  
Sebastien Rubin ◽  
Isabelle Forfar ◽  
...  

AbstractHeart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2165
Author(s):  
Alida Linda Patrizia Caforio ◽  
Giacomo De Luca ◽  
Anna Baritussio ◽  
Mara Seguso ◽  
Nicoletta Gallo ◽  
...  

Background: Heart involvement (HInv) in systemic sclerosis (SSc) may relate to myocarditis and is associated with poor prognosis. Serum anti-heart (AHA) and anti-intercalated disk autoantibodies (AIDA) are organ and disease-specific markers of isolated autoimmune myocarditis. We assessed frequencies, clinical correlates, and prognostic impacts of AHA and AIDA in SSc. Methods: The study included consecutive SSc patients (n = 116, aged 53 ± 13 years, 83.6% females, median disease duration 7 years) with clinically suspected heart involvement (symptoms, abnormal ECG, abnormal troponin I or natriuretic peptides, and abnormal echocardiography). All SSc patients underwent CMR. Serum AHA and AIDA were measured by indirect immunofluorescence in SSc and in control groups of non-inflammatory cardiac disease (NICD) (n = 160), ischemic heart failure (IHF) (n = 141), and normal blood donors (NBD) (n = 270). AHA and AIDA status in SSc was correlated with baseline clinical, diagnostic features, and outcome. Results: The frequency of AHA was higher in SSc (57/116, 49%, p < 0.00001) than in NICD (2/160, 1%), IHF (2/141, 1%), or NBD (7/270, 2.5%). The frequency of AIDA was higher (65/116, 56%, p < 0.00001) in SSc than in NICD (6/160, 3.75%), IHF (3/141, 2%), or NBD (1/270, 0.37%). AHAs were associated with interstitial lung disease (p = 0.04), history of chest pain (p = 0.026), abnormal troponin (p = 0.006), AIDA (p = 0.000), and current immunosuppression (p = 0.01). AHAs were associated with death (p = 0.02) and overall cardiac events during follow-up (p = 0.017). Conclusions: The high frequencies of AHA and AIDA suggest a high burden of underdiagnosed autoimmune HInv in SSc. In keeping with the negative prognostic impact of HInv in SSc, AHAs were associated with dismal prognosis.


2021 ◽  
Author(s):  
Rengasayee Veeraraghavan ◽  
Nicolae Moise ◽  
Seth H. Weinberg

2021 ◽  
Vol 153 (8) ◽  
Author(s):  
Nicolae Moise ◽  
Heather L. Struckman ◽  
Celine Dagher ◽  
Rengasayee Veeraraghavan ◽  
Seth H. Weinberg

The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction–adjacent perinexus and mechanical junction–associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.


2021 ◽  
Vol 10 (11) ◽  
pp. 2476
Author(s):  
Alida L. P. Caforio ◽  
Anna Baritussio ◽  
Renzo Marcolongo ◽  
Chun-Yan Cheng ◽  
Elena Pontara ◽  
...  

Background: Sarcoidosis is an immune-mediated disease. Cardiac involvement, a granulomatous form of myocarditis, is under-recognized and prognostically relevant. Anti-heart autoantibodies (AHAs) and anti-intercalated disk autoantibodies (AIDAs) are autoimmune markers in nonsarcoidosis myocarditis forms. Objective: The aim was to assess serum AHAs and AIDAs as autoimmune markers in cardiac sarcoidosis. Methods: This is a cross-sectional study on AHA and AIDA frequency in: 29 patients (aged 46 ± 12, 20 male) with biopsy-proven extracardiac sarcoidosis and biopsy-proven or clinically suspected and confirmed by 18-fluorodeoxyglucose positron emission tomography and/or cardiovascular magnetic resonance (CMR) cardiac involvement; 30 patients (aged 44 ± 11, 12 male) with biopsy-proven extracardiac sarcoidosis without cardiac involvement (no cardiac symptoms, normal 12-lead electrocardiogram, echocardiography and CMR), and control patients with noninflammatory cardiac disease (NICD) (n = 160), ischemic heart failure (IHF) (n = 141) and normal blood donors (NBDs) (n = 270). Sarcoidosis patients were recruited in two recruiting tertiary centers in the USA and Italy. AHAs and AIDAs were detected by indirect immunofluorescence on the human myocardium and skeletal muscle. Results: AHA and AIDA frequencies were higher in sarcoidosis with cardiac involvement (86%; 62%) than in sarcoidosis without cardiac involvement (0%; 0%), NICD (8%; 4%), IHF (7%; 2%) and NBD (9%; 0%) (p = 0.0001; p = 0.0001, respectively). Sensitivity and specificity for cardiac sarcoidosis were 86% and 92% for positive AHAs and 62% and 98% for positive AIDAs, respectively. AIDAs in cardiac sarcoidosis were associated with a higher number of involved organs (p = 0.04). Conclusions: Serum AHAs and AIDAs provide novel noninvasive diagnostic autoimmune markers for cardiac sarcoidosis.


2021 ◽  
Author(s):  
Nicolae Moise ◽  
Heather L. Struckman ◽  
Celine Dagher ◽  
Rengasayee Veeraraghavan ◽  
Seth H. Weinberg

AbstractThe intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains around mechanical and gap junctions, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structure of the ID and intercellular cleft are not well characterized, and to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating ID nanoscale structure, based on experimental measurements from transmission electron microscopy (TEM) images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances are sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations demonstrated that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we find that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of post-junctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we find that disruption of local ID nanodomains can lead to either conduction slowing or enhancing, depending on gap junctional coupling strength. Overall, our study demonstrates that ID nanoscale structure can play a significant role in regulating cardiac conduction.


2021 ◽  
Vol 120 (3) ◽  
pp. 333a-334a
Author(s):  
Nicolae Moise ◽  
Heather L. Struckman ◽  
Celine Dagher ◽  
Rengasayee Veeraraghavan ◽  
Seth H. Weinberg

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Louisa Mezache ◽  
Heather L. Struckman ◽  
Amara Greer-Short ◽  
Stephen Baine ◽  
Sándor Györke ◽  
...  

AbstractAtrial fibrillation (AF) is the most common arrhythmia and is associated with inflammation. AF patients have elevated levels of inflammatory cytokines known to promote vascular leak, such as vascular endothelial growth factor A (VEGF). However, the contribution of vascular leak and consequent cardiac edema to the genesis of atrial arrhythmias remains unknown. Previous work suggests that interstitial edema in the heart can acutely promote ventricular arrhythmias by disrupting ventricular myocyte intercalated disk (ID) nanodomains rich in cardiac sodium channels (NaV1.5) and slowing cardiac conduction. Interestingly, similar disruption of ID nanodomains has been identified in atrial samples from AF patients. Therefore, we tested the hypothesis that VEGF-induced vascular leak can acutely increase atrial arrhythmia susceptibility by disrupting ID nanodomains and slowing atrial conduction. Treatment of murine hearts with VEGF (30–60 min, at clinically relevant levels) prolonged the electrocardiographic P wave and increased susceptibility to burst pacing-induced atrial arrhythmias. Optical voltage mapping revealed slower atrial conduction following VEGF treatment (10 ± 0.4 cm/s vs. 21 ± 1 cm/s at baseline, p < 0.05). Transmission electron microscopy revealed increased intermembrane spacing at ID sites adjacent to gap junctions (GJs; 64 ± 9 nm versus 17 ± 1 nm in controls, p < 0.05), as well as sites next to mechanical junctions (MJs; 63 ± 4 nm versus 27 ± 2 nm in controls, p < 0.05) in VEGF–treated hearts relative to controls. Importantly, super-resolution microscopy and quantitative image analysis revealed reorganization of NaV1.5 away from dense clusters localized near GJs and MJs to a more diffuse distribution throughout the ID. Taken together, these data suggest that VEGF can acutely predispose otherwise normal hearts to atrial arrhythmias by dynamically disrupting NaV1.5-rich ID nanodomains and slowing atrial conduction. These data highlight inflammation-induced vascular leak as a potential factor in the development and progression of AF.


Sign in / Sign up

Export Citation Format

Share Document