ventricular myocytes
Recently Published Documents


TOTAL DOCUMENTS

4191
(FIVE YEARS 212)

H-INDEX

119
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Junlan Zhou ◽  
Neha Singh ◽  
Chloe Monnier ◽  
William Marszalec ◽  
Li Gao ◽  
...  

BIN1 (amphyphysin-II) is a structural protein involved in T-tubule (TT) formation and phosphatidylinositol-4,5-bisphosphate (PIP2) is responsible for localization of BIN1 to sarcolemma. The goal of this study was to determine if PIP2-mediated targeting of BIN1 to sarcolemma is compromised during the development of heart failure (HF) and is responsible for TT remodeling. Immunohistochemistry showed co-localization of BIN1, Cav1.2, PIP2, and phospholipase-Cβ1 (PLCβ1) in TTs in normal rat and human ventricular myocytes. PIP2 levels were reduced in spontaneously hypertensive rats during HF progression compared to age-matched controls. A PIP Strip assay of two native mouse cardiac-specific isoforms of BIN1 including the longest (cardiac BIN1 #4) and shortest (cardiac BIN1 #1) isoforms as well human skeletal BIN1 showed that all bound PIP2. In addition, overexpression of all three BIN1 isoforms caused tubule formation in HL-1 cells. A triple-lysine motif in a short loop segment between two helices was mutated and replaced by negative charges which abolished tubule formation, suggesting a possible location for PIP2 interaction aside from known consensus binding sites. Pharmacological PIP2 depletion in rat ventricular myocytes caused TT loss and was associated with changes in Ca2+ release typically found in myocytes during HF, including a higher variability in release along the cell length and a slowing in rise time, time to peak, and decay time in treated myocytes. These results demonstrate that depletion of PIP2 can lead to TT disruption and suggest that PIP2 interaction with cardiac BIN1 is required for TT maintenance and function.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ningning Guo ◽  
Di Zheng ◽  
Jiaxin Sun ◽  
Jian Lv ◽  
Shun Wang ◽  
...  

Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.


2021 ◽  
Author(s):  
Pablo Montañés-Agudo ◽  
Simona Casini ◽  
Simona Aufiero ◽  
Auriane C. Ernault ◽  
Ingeborg van der Made ◽  
...  

Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated sodium and voltage-gated calcium channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking-down the essential minor spliceosome component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2. Functional consequences were studied through path-clamp analysis, and revealed reduced sodium and L-type calcium currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure.


2021 ◽  
Vol 2 (4) ◽  
pp. 100950
Author(s):  
Ana Helena Macedo Pereira ◽  
Alisson Campos Cardoso ◽  
Kleber Gomes Franchini

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Angela F. Dulhunty ◽  
James A. Fraser ◽  
Christopher L.-H. Huang ◽  
Samantha C. Salvage

The P2328S mutation in mice is associated with arrhythmia and spontaneous diastolic calcium release in atrial and ventricular myocytes and there is a corresponding leftward shift in the Ca2+-activation curve for mutant RYR2 channels from homozygous mouse hearts (Salvage et al. 2019. J Cell Sci. https://doi.org/10.1242/jcs.229039). P2328 is located in helical domain 1 (HD1) of RYR2. Local structural changes likely result when structurally active proline residues are replaced by structurally inert serine residues. We speculate that local structural changes in HD1 lead to sequential intradomain and interdomain stearic changes through the protein to the distant channel gate, which favor the open pore conformation. The drug flecainide prevents arrhythmia in humans and mouse models of CPVT by blocking NaV1.5 and RYR2 channels. Conventionally, flecainide blocks RYR2 channels in a voltage-dependent manner. We did not observe voltage-dependent pore block. This was possibly because, in contrast to previous studies, the only channel modulators that we used to produce end-diastolic control channel activity were 1 µM cytoplasmic Ca2+ and 1 mM luminal Ca2+. We observed previously unreported, voltage-independent increases in WT and P2328S channel activity at low flecainide concentrations, followed by a decline in activity at higher concentrations. The increase in activity dominated the effect of flecainide on P2328S channels. These effects suggested high-affinity flecainide binding to an activation site and lower-affinity binding to an inhibition site, both distant from the channel pore (Salvage et al. 2021. Cells. https://doi.org/10.3390/cells10082101). Unlike channel block by flecainide, the drug under our conditions stabilized intrinsic sub-conductance activity at +40 mV and −40 mV. Since flecainide effectively reduces CPVT arrythmia clinically and in animal models, we conclude that voltage-independent inhibition and voltage-dependent channel block prevail under cellular conditions. However, channel activation is important to note as it may be unmasked in other circumstances such as acquired cardiac disorders, mutations, or additional drug applications.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Débora Falcón ◽  
Isabel Mayoral ◽  
Antonio Ordóñez ◽  
Tarik Smani

It is well established that abnormalities in [Ca2+] regulation occur in heart diseases. Actually, independent studies demonstrated that Orai1/2/3 and TRPC protein related with store-operated calcium channels (SOCC) have a role in cardiac pathologies. Ischemia/reperfusion (I/R) stimulates transcription factor activation that modifies the expression of genes implicated in the pathogenesis of this process. Previous results described an increase in the expression of Orai1 and TRPC5 in cardiomyocytes after I/R, although the molecular mechanisms that mediate this regulation are still unknown. The aim of this study is to examine the molecular mechanisms implicated in the regulation of SOCC in cardiomyocytes after I/R focusing on the handling of intracellular [Ca2+]. Experiments were performed in a rat model of myocardial I/R, in adult (ARVM) and neonatal rat ventricular myocytes (NRVM), and in ventricular samples of heart-failure patients. Immunofluorescence was used to investigate CREB activation, and the protein expression was analyzed by Western blot. Calcium diastolic studies were realized using microfluorimetric technic with FURA-2AM. To evoke intracellular Ca2+ transients, ARVMs were field stimulated at 0.5 Hz and NRVMs at 1 Hz. An activation of CREB after I/R was observed in adult and neonatal rat cardiomyocytes. Furthermore, it was demonstrated that this activation was mediated by PKA, but not for EPAC2 or ERK. I/R induced an CREB-dependent ORAI protein expression increase and also an increase in the diastolic calcium in NRVM and ARVM from I/R animal models. Additionally, it was observed that ORAI1 inhibition with SYNTA-66 or GSK reduced the calcium diastolic increase induced by I/R. We demonstrated, for the first time, the activation of the transcription factor CREB in cardiomyocytes after I/R. This activation induces an up-regulation of ORAI1, suggesting that this channel plays a role in the I/R induced calcium diastolic increase.


2021 ◽  
Vol 14 (11) ◽  
pp. 1142
Author(s):  
Dénes Kiss ◽  
Balázs Horváth ◽  
Tamás Hézső ◽  
Csaba Dienes ◽  
Zsigmond Kovács ◽  
...  

Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.


Sign in / Sign up

Export Citation Format

Share Document