sodium channels
Recently Published Documents


TOTAL DOCUMENTS

3142
(FIVE YEARS 290)

H-INDEX

130
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Reham Alfaraj ◽  
Zainab Alabdulsalam ◽  
Zahrah Alfaraj ◽  
Hawraa Alsunni ◽  
Hussain Alhawaj ◽  
...  

Several factors might influence the duration and efficiency of local anesthesia. This study investigates the effect of habitual caffeine intake on lidocaine action and explores the potential involvement of voltage-gated sodium channels in the interaction effect. Wistar rats were divided into four groups: (i) control (Ctrl), (ii) lidocaine intraplantar injection (LIDO), (iii) habitual caffeine intake (CAF), and (iv) lidocaine intraplantar injection and habitual caffeine intake (LIDO + CAF). Behavioral assessments, consisting of a paw pressure test for mechanical pressure sensation and a paw withdrawal latency test for thermal pain sensation, were performed at 0, 30, 60, and 90 minutes following lidocaine injection and after 10, 11, and 12 weeks of CAF intake. Pressure sensation was significantly reduced in the LIDO + CAF group compared with the control group. Moreover, the LIDO + CAF group exhibited reduced sensation compared to LIDO alone group. The LIDO + CAF combination exerted a synergistic effect at 30 and 60 minutes compared with the control. This synergistic effect was noted at 60 minutes (11 weeks of CAF intake) and at 30 minutes (12 weeks of CAF intake) compared with LIDO alone. Augmented thermal pain-relieving effects were observed in the LIDO + CAF group at all weeks compared to the control group and at 10 weeks compared to LIDO alone group. The molecular analysis of dorsal root ganglia suggested that CAF upregulated the mRNA expression of the Nav1.3, Nav1.7, and Nav1.8 sodium channel subtypes. Chronic caffeine consumption potentiates the local anesthetic action of lidocaine in an experimental animal model through mechanisms that involve the upregulation of voltage-gated sodium channels in the dorsal root ganglia.


2022 ◽  
Vol 15 (1) ◽  
pp. e246538
Author(s):  
Jelte Kelchtermans ◽  
Sara E Pinney ◽  
Jacqueline M M Leonard ◽  
Sharon Mcgrath-Morrow

Pseudohypoaldosteronism type 1B is a rare autosomal recessive disorder caused by dysfunction of amiloride-sensitive epithelial sodium channels (ENaCs). We present the case of a neonate with cardiogenic shock after cardiac arrest due to profound hyperkalaemia. Genetic testing revealed a novel homozygous variant in SCNNIA. We review diagnostic considerations including the molecular mechanisms of disease, discuss treatment approaches and highlight the possible significance of the diversity of pulmonary ENaCs.


2022 ◽  
Author(s):  
Petar Todorov ◽  
Petia Peneva ◽  
Stela Georgieva ◽  
Jana Tchekalarova ◽  
Miroslav Rangelov ◽  
...  

Herein, the synthesis and characterization of some novel N-modified hybrid analogues of hemorphins containing a C-5 substituted hydantoin residue as potential anticonvulsants and for the blockade of sodium channels are presented.


2022 ◽  
pp. 112812
Author(s):  
Sandra Raposo-Garcia ◽  
M. Carmen Louzao ◽  
Haruhiko Fuwa ◽  
Makoto Sasaki ◽  
Carmen Vale ◽  
...  

2021 ◽  
Author(s):  
Gerry S. Oxford ◽  
Paul Forscher ◽  
P. Kay Wagoner ◽  
David J. Adams

The block of voltage-dependent sodium channels by saxitoxin (STX) and tetrodotoxin (TTX) was investigated in voltage-clamped squid giant axons internally perfused with a variety of permeant monovalent cations. Substitution of internal Na+ by either NH4+ or N2H5+ resulted in a reduction of outward current through sodium channels under control conditions. In contrast, anomalous increases in both inward and outward currents were seen for the same ions if some of the channels were blocked by STX or TTX, suggesting a relief of block by these internal cations. External NH4+ was without effect on the apparent magnitude of toxin block. Likewise, internal inorganic monovalent cations were without effect, suggesting that proton donation by NH4+ might be involved in reducing toxin block. Consistent with this hypothesis, decreases in internal pH mimicked internal perfusion with NH4+ in reducing toxin block. The interaction between internally applied protons and externally applied toxin molecules appears to be competitive, as transient increases in sodium channel current were observed during step increases in intracellular pH in the presence of a fixed STX concentration. In addition to these effects on toxin block, low internal pH produced a voltage-dependent block of sodium channels and enhanced steady-state inactivation. Elevation of external buffer capacity only marginally diminished the modulation of STX block by internal NH4+, suggesting that alkalinization of the periaxonal space and a resultant decrease in the cationic STX concentration during NH4+ perfusion may play only a minor role in the effect. These observations indicate that internal monovalent cations can exert trans-channel influences on external toxin binding sites on sodium channels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangyu Wang ◽  
Boxuan Zhang ◽  
Xuedong Li ◽  
Xingang Liu ◽  
Songsong Wang ◽  
...  

Gastrodin (GAS) is the main bioactive ingredient of Gastrodia, a famous Chinese herbal medicine widely used as an analgesic, but the underlying analgesic mechanism is still unclear. In this study, we first observed the effects of GAS on the vincristine-induced peripheral neuropathic pain by alleviating the mechanical and thermal hyperalgesia. Further studies showed that GAS could inhibit the current density of NaV1.7 and NaV1.8 channels and accelerate the inactivation process of NaV1.7 and NaV1.8 channel, thereby inhibiting the hyperexcitability of neurons. Additionally, GAS could significantly reduce the over-expression of NaV1.7 and NaV1.8 on DRG neurons from vincristine-treated rats according to the analysis of Western blot and immunofluorescence results. Moreover, based on the molecular docking and molecular dynamic simulation, the binding free energies of the constructed systems were calculated, and the binding sites of GAS on the sodium channels (NaV1.7 and NaV1.8) were preliminarily determined. This study has shown that modulation of NaV1.7 and NaV1.8 sodium channels by GAS contributing to the alleviation of vincristine-induced peripheral neuropathic pain, thus expanding the understanding of complex action of GAS as a neuromodulator.


Author(s):  
Zhi Qiao ◽  
Wen Fu ◽  
Yongchao Zhang ◽  
Ruijia Chen ◽  
Zhiping Xu ◽  
...  

2021 ◽  
Author(s):  
Estelle Moubarak ◽  
Yanis Inglebert ◽  
Fabien Tell ◽  
Jean-Marc Goaillard

ABSTRACTAction potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape is also used to distinguish neuronal populations, as it greatly varies between neuronal types. For instance, AP duration ranges from hundreds of microseconds in cerebellar granule cells to 2-3 milliseconds in substantia nigra pars compacta (SNc) dopaminergic (DA) neurons. While most of this variation seems to arise from differences in the subtypes of voltage- and calcium-gated ion channels expressed, a few studies suggested that dendritic morphology may also affect AP shape. However, AP duration also displays significant variability in a same neuronal type, while the determinants of these variations are poorly known. Using electrophysiological recordings, morphological reconstructions and realistic Hodgkin-Huxley modeling, we investigated the relationships between dendritic morphology and AP shape in SNc DA neurons. In this neuronal type where the axon arises from an axon-bearing dendrite (ABD), the duration of the somatic AP could be predicted from a linear combination of the complexities of the ABD and the non-ABDs. Dendrotomy simulation and experiments showed that these correlations arise from the causal influence of dendritic topology on AP duration, due in particular to a high density of sodium channels in the somato-dendritic compartment. In addition, dendritic morphology also modulated AP back-propagation efficiency in response to barrages of EPSCs in the ABD. In line with previous findings, these results demonstrate that dendritic morphology plays a major role in defining the electrophysiological properties of SNc DA neurons and their cell-to-cell variations.SIGNIFICANCE STATEMENTAction potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape (e.g. duration) greatly varies between neuronal types but also within a same neuronal type. While differences in ion channel expression seem to explain most of AP shape variation across cell types, the determinants of cell-to-cell variations in a same neuronal type are mostly unknown. We used electrophysiological recordings, neuronal reconstruction and modeling to show that, due to the presence of sodium channels in the somato-dendritic compartment, a large part of cell-to-cell variations in somatic AP duration in substantia nigra pars compacta dopaminergic neurons is explained by variations in dendritic topology.


2021 ◽  
Vol 35 (12) ◽  
Author(s):  
Jizhe Hao ◽  
Lucie Brosse ◽  
Caroline Bonnet ◽  
Myriam Ducrocq ◽  
Françoise Padilla ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document