scholarly journals Deep Learning for Text Style Transfer: A Survey

2021 ◽  
pp. 1-51
Author(s):  
Di Jin ◽  
Zhijing Jin ◽  
Zhiting Hu ◽  
Olga Vechtomova ◽  
Rada Mihalcea

Abstract Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing, and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of this task.

Author(s):  
K.G.C.M Kooragama ◽  
L.R.W.D. Jayashanka ◽  
J.A. Munasinghe ◽  
K.W. Jayawardana ◽  
Muditha Tissera ◽  
...  

2021 ◽  
Author(s):  
Dilith Sasanka ◽  
H. K. N Malshani ◽  
Uchitha I. Wickramaratne ◽  
Yashmitha Kavindi ◽  
Muditha Tissera ◽  
...  

10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


2020 ◽  
Vol 6 ◽  
Author(s):  
David Owen ◽  
Laurence Livermore ◽  
Quentin Groom ◽  
Alex Hardisty ◽  
Thijs Leegwater ◽  
...  

We describe an effective approach to automated text digitisation with respect to natural history specimen labels. These labels contain much useful data about the specimen including its collector, country of origin, and collection date. Our approach to automatically extracting these data takes the form of a pipeline. Recommendations are made for the pipeline's component parts based on some of the state-of-the-art technologies. Optical Character Recognition (OCR) can be used to digitise text on images of specimens. However, recognising text quickly and accurately from these images can be a challenge for OCR. We show that OCR performance can be improved by prior segmentation of specimen images into their component parts. This ensures that only text-bearing labels are submitted for OCR processing as opposed to whole specimen images, which inevitably contain non-textual information that may lead to false positive readings. In our testing Tesseract OCR version 4.0.0 offers promising text recognition accuracy with segmented images. Not all the text on specimen labels is printed. Handwritten text varies much more and does not conform to standard shapes and sizes of individual characters, which poses an additional challenge for OCR. Recently, deep learning has allowed for significant advances in this area. Google's Cloud Vision, which is based on deep learning, is trained on large-scale datasets, and is shown to be quite adept at this task. This may take us some way towards negating the need for humans to routinely transcribe handwritten text. Determining the countries and collectors of specimens has been the goal of previous automated text digitisation research activities. Our approach also focuses on these two pieces of information. An area of Natural Language Processing (NLP) known as Named Entity Recognition (NER) has matured enough to semi-automate this task. Our experiments demonstrated that existing approaches can accurately recognise location and person names within the text extracted from segmented images via Tesseract version 4.0.0. Potentially, NER could be used in conjunction with other online services, such as those of the Biodiversity Heritage Library to map the named entities to entities in the biodiversity literature (https://www.biodiversitylibrary.org/docs/api3.html). We have highlighted the main recommendations for potential pipeline components. The document also provides guidance on selecting appropriate software solutions. These include automatic language identification, terminology extraction, and integrating all pipeline components into a scientific workflow to automate the overall digitisation process.


Sign in / Sign up

Export Citation Format

Share Document