Learning and Extracting Initial Mealy Automata with a Modular Neural Network Model

1995 ◽  
Vol 7 (4) ◽  
pp. 822-844 ◽  
Author(s):  
Peter Tiňo ◽  
Jozef Šajda

A hybrid recurrent neural network is shown to learn small initial mealy machines (that can be thought of as translation machines translating input strings to corresponding output strings, as opposed to recognition automata that classify strings as either grammatical or nongrammatical) from positive training samples. A well-trained neural net is then presented once again with the training set and a Kohonen self-organizing map with the “star” topology of neurons is used to quantize recurrent network state space into distinct regions representing corresponding states of a mealy machine being learned. This enables us to extract the learned mealy machine from the trained recurrent network. One neural network (Kohonen self-organizing map) is used to extract meaningful information from another network (recurrent neural network).

2018 ◽  
Vol 31 (4) ◽  
pp. 571-583
Author(s):  
Mahdi Farhadi

It is of vital importance to use proper training data to perform accurate shortterm load forecasting (STLF) based on artificial neural networks. The pattern of the loads which are used for the training of Kohonen Self Organizing Map (SOM) neural network in STLF models should be of the highest similarity with the pattern of the electric load of the forecasting day. In this paper, an electric load classifier model is proposed which relies on the pattern recognition capability of SOM. The performance of the proposed electric load classifier method is evaluated by Iran electric grid data. The proposed method requires a very few number of training samples for training the Kohonen neural network of the STLF model and can accurately predict electric load in the network.


2002 ◽  
Vol 21 (12) ◽  
pp. 1193-1196 ◽  
Author(s):  
Lin Zhang ◽  
Al Fortier ◽  
David C. Bartel

Sign in / Sign up

Export Citation Format

Share Document