A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks

1997 ◽  
Vol 9 (2) ◽  
pp. 461-478 ◽  
Author(s):  
Lu Yingwei ◽  
N. Sundararajan ◽  
P. Saratchandran

This article presents a sequential learning algorithm for function approximation and time-series prediction using a minimal radial basis function neural network (RBFNN). The algorithm combines the growth criterion of the resource-allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RBFNN. The performance of the algorithm is compared with RAN and the enhanced RAN algorithm of Kadirkamanathan and Niranjan (1993) for the following benchmark problems: (1) hearta from the benchmark problems database PROBEN1, (2) Hermite polynomial, and (3) Mackey-Glass chaotic time series. For these problems, the proposed algorithm is shown to realize RBFNNs with far fewer hidden neurons with better or same accuracy.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Syed Saad Azhar Ali ◽  
Muhammad Moinuddin ◽  
Kamran Raza ◽  
Syed Hasan Adil

Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to thel2stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development.


Sign in / Sign up

Export Citation Format

Share Document