relative contribution
Recently Published Documents


TOTAL DOCUMENTS

4203
(FIVE YEARS 1245)

H-INDEX

117
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Zhen Wu ◽  
Dikla Aharonovich ◽  
Dalit Roth-Rosenberg ◽  
Osnat Weissberg ◽  
Tal Luzzatto-Knaan ◽  
...  

Marine phytoplankton are responsible for about half of the photosynthesis on Earth. Many are mixotrophs, combining photosynthesis with heterotrophic assimilation of organic carbon but the relative contribution of these two carbon sources is not well quantified. Here, single-cell measurements reveal that Prochlorococcus at the base of the photic zone in the Eastern Mediterranean Sea are obtaining only ~20% of carbon required for growth by photosynthesis. Consistently, laboratory-calibrated evaluations of Prochlorococcus photosynthesis indicate that carbon fixation is systematically too low to support published in situ growth rates in the deep photic layer of the Pacific Ocean. Furthermore, agent-based model simulations show that mixotrophic cells maintain realistic growth rates and populations 10s of meters deeper than obligate photo-autotrophs, deepening the nutricline and Deep Chlorophyll Maximum by ~20 m. Time-series of Prochlorococcus ecotype-abundance from the subtropical North Atlantic and North Pacific suggest that up to 30% of the Prochlorococcus cells live where light intensity is not enough to sustain obligate photo-autotrophic populations during warm, stratified periods. Together, these data and models suggest that mixotrophy underpins the ecological success of a large fraction of the global Prochlorococcus population and its collective genetic diversity.


Author(s):  
Veerappan Subha ◽  
Thangaraj Seethalakshmi ◽  
Thangavelu Balakrishnan ◽  
M Judith Percino ◽  
Perumal Venkatesan

The crystal structure of the adduct piperazine-1,4-diium 3,5-dinitro-2-oxidobenzoate–piperazine–water (2/1/2) shows the existence of a 3,5-dinitrosalicylate dianion (DNSA2−) and a protonated piperazine-1,4-diium cation (PIP2+) along with a piperazine molecule. The formula of the title adduct in the asymmetric unit is 2C4H12N2 2+·2C7H2N2O7 2−·C4H10N2·2H2O with Z = 1. The piperazine ring in the piperazine-1,4-diium cation and in the neutral piperazine molecule adopt chair conformations. All O atoms in the DNSA2− moiety and the water molecule act as hydrogen-bonding acceptors for various intermolecular O—H...O, N—H...O and C—H...O interactions, which stabilize the crystal structure. Various supramolecular architectures formed by the different intermolecular interactions are discussed. The relative contribution of various intermolecular contacts is analysed with the aid of two-dimensional (full and decomposed) fingerprint plots, indicating that H...O/O...H (50.2%) and H...H (36.2%) contacts are the major contributors to the stabilization of the crystal structure.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 235
Author(s):  
Jung-Woo Park ◽  
Yejin Kim ◽  
Kwan-Woo Kim ◽  
Amane Fujiwara ◽  
Hisatomo Waga ◽  
...  

The northern Bering and Chukchi seas are biologically productive regions but, recently, unprecedented environmental changes have been reported. For investigating the dominant phytoplankton communities and relative contribution of small phytoplankton (<2 µm) to the total primary production in the regions, field measurements mainly for high-performance liquid chromatography (HPLC) and size-specific primary productivity were conducted in the northern Bering and Chukchi seas during summer 2016 (ARA07B) and 2017 (OS040). Diatoms and phaeocystis were dominant phytoplankton communities in 2016 whereas diatoms and Prasinophytes (Type 2) were dominant in 2017 and diatoms were found as major contributors for the small phytoplankton groups. For size-specific primary production, small phytoplankton contributed 38.0% (SD = ±19.9%) in 2016 whereas 25.0% (SD = ±12.8%) in 2017 to the total primary productivity. The small phytoplankton contribution observed in 2016 is comparable to those reported previously in the Chukchi Sea whereas the contribution in 2017 mainly in the northern Bering Sea is considerably lower than those in other arctic regions. Different biochemical compositions were distinct between small and large phytoplankton in this study, which is consistent with previous results. Significantly higher carbon (C) and nitrogen (N) contents per unit of chlorophyll-a, whereas lower C:N ratios were characteristics in small phytoplankton in comparison to large phytoplankton. Given these results, we could conclude that small phytoplankton synthesize nitrogen-rich particulate organic carbon which could be easily regenerated.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Oscar F. Herrán ◽  
María del Pila Zea

Background. There is a lack of knowledge in Colombia about dietary intake and sources of animal protein. Design. Cross-sectional, nationally representative surveys. Setting. Colombia. Participants. n = 32,457 participants aged from 1 to 64 years. The sample analyzed included 21,036 boys and nonpregnant girls, 10,099 adults, and 1,322 pregnant women, 118 of whom were below 18 years of age. Results. Protein intake was 32.9 g/d (95% CI: 32.4, 33.4) per 1,000 kilocalories. The relative contribution (%) of total protein to the total energy intake/day (acceptable macronutrient distribution) was 13.2% (95% CI: 13.0, 13.3). The acceptable macronutrient distribution (AMDR) for animal protein for those aged 1 to 64 years was 7.8% (95% CI: 7.6, 8.0), with a minimum of 7.1% (95% CI: 6.7, 7.5), which was for children aged from 13 to 17 years, and a maximum of 8.3% (95% CI: 8.1, 8.5), for children aged from 1 to 4 years ( P = 0.018 ). For all groups, animal protein made up the majority of total proteins, with 62.6% (95% CI: 61.7, 63.6) for preschoolers, 55.8% (95% CI: 53.2, 58.4) for school-aged children, 54.6% (95% CI: 53.0, 56.1) for adolescents, 58.1% (95% CI: 57.5, 58.7) for adults, and 57.5% (95% CI: 55.2, 59.7) for pregnant women ( P = 0.027 ). The three main dietary sources of animal protein were red meat (17.8%), chicken (16.3%), and eggs (10.5%). The sources of vegetal protein were bread-arepa-pasta (20.0%), cereals (19.8%), and legumes (8.2%). Conclusions. Protein intake is excessive according to the Recommended Dietary Allowance (RDA), while it is not excessive from the perspective of the AMDR.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Paula C. J. Reis ◽  
Shoji D. Thottathil ◽  
Yves T. Prairie

AbstractPrevious stable isotope and biomarker evidence has indicated that methanotrophy is an important pathway in the microbial loop of freshwater ecosystems, despite the low cell abundance of methane-oxidizing bacteria (MOB) and the low methane concentrations relative to the more abundant dissolved organic carbon (DOC). However, quantitative estimations of the relative contribution of methanotrophy to the microbial carbon metabolism of lakes are scarce, and the mechanism allowing methanotrophy to be of comparable importance to DOC-consuming heterotrophy remained elusive. Using incubation experiments, microscopy, and multiple water column profiles in six temperate lakes, we show that MOB play a much larger role than their abundances alone suggest because of their larger cell size and higher specific activity. MOB activity is tightly constrained by the local methane:oxygen ratio, with DOC-rich lakes with large hypolimnetic volume fraction showing a higher carbon consumption through methanotrophy than heterotrophy at the whole water column level. Our findings suggest that methanotrophy could be a critical microbial carbon consumption pathway in many temperate lakes, challenging the prevailing view of a DOC-centric microbial metabolism in these ecosystems.


Author(s):  
Alan Mark Weinstein

The renal response to acute hyperkalemia is mediated by increased K secretion within connecting tubule (CNT), flux that is modulated by tubular effects (e.g. aldosterone) in conjunction with increased luminal flow. There is ample evidence that peritubular K blunts Na reabsorption in proximal tubule, thick ascending Henle limb, and distal convoluted tubule (DCT). While any such reduction may augment CNT delivery, the relative contribution of each is uncertain. The kidney model of this lab was recently advanced with representation of cortical labyrinth and medullary ray. Model tubules capture the impact of hyperkalemia to blunt Na reabsorption within each upstream segment. However, this forces the question of the extent to which increased Na delivery is transmitted past macula densa and its tubuloglomerular feedback (TGF) signal. Beyond increasing macula densa Na delivery, peritubular K is predicted to raise cytosolic Cl and depolarize macula densa cells, which may also activate TGF. Thus, although upstream reduction in Na transport may be larger, it appears that the DCT effect is critical to increasing CNT delivery. Beyond the flow effect, hyperkalemia reduces ammoniagenesis and reduced ammoniagenesis enhances K excretion. What this model provides is a possible mechanism. When cortical NH4 is taken up via peritubular Na,K(NH4)-ATPase, it acidifies principal cells. Consequently, reduced ammoniagenesis increases principal cell pH, thereby increasing conductance of both ENaC and ROMK, enhancing K excretion. In this model, aldosterone's effect on principal cells, diminished DCT Na reabsorption, and reduced ammoniagenesis, all provide relatively equal and additive contributions to renal K excretion.


2022 ◽  
Author(s):  
Sarah Ruth Marzec ◽  
Katharine Pelletier ◽  
Amy Hui-Pin Chang ◽  
Ian Dworkin

Over 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington's selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely cryptic.


2022 ◽  
Vol 14 (2) ◽  
pp. 672
Author(s):  
Rebeca Utrilla-Catalan ◽  
Rocío Rodríguez-Rivero ◽  
Viviana Narvaez ◽  
Virginia Díaz-Barcos ◽  
Maria Blanco ◽  
...  

Following the liberalization of the coffee sector, governance and power balance in the international coffee trade has changed, with associated impacts on livelihoods in producing countries, most of which are middle- and low-income countries. Drawing on trade data for the period 1995–2018, we examine the dynamics and evolution of the international green coffee market to shed light on the re-distribution of value in the coffee supply chain. Data analysis shows that, over the studied period, the green coffee trade has increased considerably while the number of countries with a relevant role in trade has decreased, so that large exporting countries cover a higher share of trade, to the detriment of small exporting countries. We analyzed various properties of the global coffee trade network to provide insight on the relative contribution of countries not only in terms of their export value but also in terms of other selected features. The green coffee trade has gone from being distributed in many traditionally coffee-producing countries to concentrating mainly on the major coffee producers, as well as in some non-producing countries. These changes in the structure of the international green coffee market have led to greater inequality between producing and importing countries.


2022 ◽  
Vol 3 ◽  
Author(s):  
Ishrat Jahan Dollan ◽  
Viviana Maggioni ◽  
Jeremy Johnston

The investigation of regional vulnerability to extreme hydroclimatic events (e.g., floods and hurricanes) is quite challenging due to its dependence on reliable precipitation estimates. Better understanding of past precipitation trends is crucial to examine changing precipitation extremes, optimize future water demands, stormwater infrastructure, extreme event measures, irrigation management, etc., especially if combined with future climate and population projections. The objective of the study is to investigate the spatial-temporal variability of average and extreme precipitation at a sub-regional scale, specifically in the Southern Mid-Atlantic United States, a region characterized by diverse topography and is among the fastest-growing areas in North America. Particularly, this work investigates past precipitation trends and patterns using the North American Land Data Assimilation System, Version 2 (NLDAS-2, 12 km/1 h resolution) reanalysis dataset during 1980–2018. Both parametric (linear regression) and non-parametric (e.g., Theil-Sen) robust statistical tools are employed in the study to analyze trend magnitudes, which are tested for statistical significance using the Mann-Kendall test. Standard precipitation indices from ETCCDI are also used to characterize trends in the relative contribution of extreme events to precipitation in the area. In the region an increasing trend (4.3 mm/year) is identified in annual average precipitation with ~34% of the domain showing a significant increase (at the 0.1 significance level) of +3 to +5 mm/year. Seasonal and sub-regional trends are also investigated, with the most pronounced increasing trends identified during summers along the Virginia and Maryland border. The study also finds a statistically significant positive trend (at a 0.05 significance level) in the annual maximum precipitation. Furthermore, the number of daily extremes (daily total precipitation higher than the 95th and 99th percentiles) also depicts statistically significant increases, indicating the increased frequency of extreme precipitation events. Investigations into the proportion of annual precipitation occurring on wet days and extremely wet days (95th and 99th percentile) also indicate a significant increase in their relative contribution. The findings of this study have the potential to improve local-scale decision-making in terms of river basin management, flood control, irrigation scheme scheduling, and stormwater infrastructure planning to address urban resilience to hydrometeorological hazards.


Sign in / Sign up

Export Citation Format

Share Document