scholarly journals The time course of consolidation of ensemble feature in visual working memory

2010 ◽  
Vol 10 (7) ◽  
pp. 760-760
Author(s):  
H. Y. Im ◽  
J. Halberda
2010 ◽  
Vol 2 (7) ◽  
pp. 270-270
Author(s):  
E. K. Vogel ◽  
G. F. Woodman ◽  
S. J. Luck

2019 ◽  
Vol 27 (8) ◽  
pp. 1404
Author(s):  
Fangfang LONG ◽  
Yuchen LI ◽  
Xiaoyu CHEN ◽  
Ziyuan LI ◽  
Tengfei LIANG ◽  
...  

Author(s):  
Edward K. Vogel ◽  
Geoffrey F. Woodman ◽  
Steven J. Luck

2012 ◽  
Vol 24 (2) ◽  
pp. 440-450 ◽  
Author(s):  
Trafton Drew ◽  
Todd S. Horowitz ◽  
Jeremy M. Wolfe ◽  
Edward K. Vogel

In everyday life, we often need to track several objects simultaneously, a task modeled in the laboratory using the multiple-object tracking (MOT) task [Pylyshyn, Z., & Storm, R. W. Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197, 1988]. Unlike MOT, however, in life, the set of relevant targets tends to be fluid and change over time. Humans are quite adept at “juggling” targets in and out of the target set [Wolfe, J. M., Place, S. S., & Horowitz, T. S. Multiple object juggling: Changing what is tracked during extended MOT. Psychonomic Bulletin & Review, 14, 344–349, 2007]. Here, we measured the neural underpinnings of this process using electrophysiological methods. Vogel and colleagues [McCollough, A. W., Machizawa, M. G., & Vogel, E. K. Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43, 77–94, 2007; Vogel, E. K., McCollough, A. W., & Machizawa, M. G. Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503, 2005; Vogel, E. K., & Machizawa, M. G. Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751, 2004] have shown that the amplitude of a sustained lateralized negativity, contralateral delay activity (CDA) indexes the number of items held in visual working memory. Drew and Vogel [Drew, T., & Vogel, E. K. Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28, 4183–4191, 2008] showed that the CDA also indexes the number of items being tracking a standard MOT task. In the current study, we set out to determine whether the CDA is a signal that merely represents the number of objects that are attended during a trial or a dynamic signal capable of reflecting on-line changes in tracking load during a single trial. By measuring the response to add or drop cues, we were able to observe dynamic changes in CDA amplitude. The CDA appears to rapidly represent the current number of objects being tracked. In addition, we were able to generate some initial estimates of the time course of this dynamic process.


2016 ◽  
Vol 30 (4) ◽  
pp. 141-154 ◽  
Author(s):  
Kira Bailey ◽  
Gregory Mlynarczyk ◽  
Robert West

Abstract. Working memory supports our ability to maintain goal-relevant information that guides cognition in the face of distraction or competing tasks. The N-back task has been widely used in cognitive neuroscience to examine the functional neuroanatomy of working memory. Fewer studies have capitalized on the temporal resolution of event-related brain potentials (ERPs) to examine the time course of neural activity in the N-back task. The primary goal of the current study was to characterize slow wave activity observed in the response-to-stimulus interval in the N-back task that may be related to maintenance of information between trials in the task. In three experiments, we examined the effects of N-back load, interference, and response accuracy on the amplitude of the P3b following stimulus onset and slow wave activity elicited in the response-to-stimulus interval. Consistent with previous research, the amplitude of the P3b decreased as N-back load increased. Slow wave activity over the frontal and posterior regions of the scalp was sensitive to N-back load and was insensitive to interference or response accuracy. Together these findings lead to the suggestion that slow wave activity observed in the response-to-stimulus interval is related to the maintenance of information between trials in the 1-back task.


Sign in / Sign up

Export Citation Format

Share Document