multiple object
Recently Published Documents


TOTAL DOCUMENTS

1184
(FIVE YEARS 267)

H-INDEX

49
(FIVE YEARS 9)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 388
Author(s):  
Bahman Moraffah ◽  
Antonia Papandreou-Suppappola

The paper considers the problem of tracking an unknown and time-varying number of unlabeled moving objects using multiple unordered measurements with unknown association to the objects. The proposed tracking approach integrates Bayesian nonparametric modeling with Markov chain Monte Carlo methods to estimate the parameters of each object when present in the tracking scene. In particular, we adopt the dependent Dirichlet process (DDP) to learn the multiple object state prior by exploiting inherent dynamic dependencies in the state transition using the dynamic clustering property of the DDP. Using the DDP to draw the mixing measures, Dirichlet process mixtures are used to learn and assign each measurement to its associated object identity. The Bayesian posterior to estimate the target trajectories is efficiently implemented using a Gibbs sampler inference scheme. A second tracking approach is proposed that replaces the DDP with the dependent Pitman–Yor process in order to allow for a higher flexibility in clustering. The improved tracking performance of the new approaches is demonstrated by comparison to the generalized labeled multi-Bernoulli filter.


Author(s):  
Madison Harasyn ◽  
Wayne S. Chan ◽  
Emma L. Ausen ◽  
David G. Barber

Aerial imagery surveys are commonly used in marine mammal research to determine population size, distribution and habitat use. Analysis of aerial photos involves hours of manually identifying individuals present in each image and converting raw counts into useable biological statistics. Our research proposes the use of deep learning algorithms to increase the efficiency of the marine mammal research workflow. To test the feasibility of this proposal, the existing YOLOv4 convolutional neural network model was trained to detect belugas, kayaks and motorized boats in oblique drone imagery, collected from a stationary tethered system. Automated computer-based object detection achieved the following precision and recall, respectively, for each class: beluga = 74%/72%; boat = 97%/99%; and kayak = 96%/96%. We then tested the performance of computer vision tracking of belugas and manned watercraft in drone videos using the DeepSORT tracking algorithm, which achieved a multiple-object tracking accuracy (MOTA) ranging from 37% – 88% and multiple object tracking precision (MOTP) between 63% – 86%. Results from this research indicate that deep learning technology can detect and track features more consistently than human annotators, allowing for larger datasets to be processed within a fraction of the time while avoiding discrepancies introduced by labeling fatigue or multiple human annotators.


Author(s):  
Luming Hu ◽  
Chen Zhao ◽  
Liuqing Wei ◽  
Thomas Talhelm ◽  
Chundi Wang ◽  
...  

2021 ◽  
pp. 116300
Author(s):  
Lionel Rakai ◽  
Huansheng Song ◽  
Shijie Sun ◽  
Wentao Zhang ◽  
Yanni Yang

Author(s):  
Yu-Zhen Huang ◽  
Shih-Shinh Huang ◽  
Feng-Chia Chang

Author(s):  
Andrew K. Mackenzie ◽  
Mike L. Vernon ◽  
Paul R. Cox ◽  
David Crundall ◽  
Rosie C. Daly ◽  
...  

AbstractPerformance in everyday tasks, such as driving and sport, requires allocation of attention to task-relevant information and the ability to inhibit task-irrelevant information. Yet there are individual differences in this attentional function ability. This research investigates a novel task for measuring attention for action, called the Multiple Object Avoidance task (MOA), in its relation to the everyday tasks of driving and sport. The aim in Study 1 was to explore the efficacy of the MOA task to predict simulated driving behaviour and hazard perception. Whilst also investigating its test–retest reliability and how it correlates to self-report driving measures. We found that superior performance in the MOA task predicted simulated driving performance in complex environments and was superior at predicting performance compared to the Useful Field of View task. We found a moderate test–retest reliability and a correlation between the attentional lapses subscale of the Driving Behaviour Questionnaire. Study 2 investigated the discriminative power of the MOA in sport by exploring performance differences in those that do and do not play sports. We also investigated if the MOA shared attentional elements with other measures of visual attention commonly attributed to sporting expertise: Multiple Object Tracking (MOT) and cognitive processing speed. We found that those that played sports exhibited superior MOA performance and found a positive relationship between MOA performance and Multiple Object Tracking performance and cognitive processing speed. Collectively, this research highlights the utility of the MOA when investigating visual attention in everyday contexts.


Sign in / Sign up

Export Citation Format

Share Document