scholarly journals The “BOUSSOLE” Buoy—A New Transparent-to-Swell Taut Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea

2008 ◽  
Vol 25 (6) ◽  
pp. 968-989 ◽  
Author(s):  
David Antoine ◽  
Pierre Guevel ◽  
Jean-François Desté ◽  
Guislain Bécu ◽  
Francis Louis ◽  
...  

Abstract A new concept of oceanographic data buoy is described, which couples a taut mooring and a “transparent-to-swell” superstructure, and is specifically designed for the collection of radiometric quantities in offshore environments. The design of the thin superstructure addresses two major requirements: stabilizing the instruments in the water column and avoiding shading them. The development of the buoy is described, starting with the theoretical assessment and then describing the various stages of development leading to the latest version of the mooring and buoy. Its performance at sea is also analyzed. This new platform has been deployed in the deep waters (>2400 m) of the northwestern Mediterranean Sea for about 4 yr (since September 2003) and provides a quasi-continuous record of optical properties at this site. The data are used for bio-optics research and for calibration and validation operations of several European and U.S. ocean color satellite missions. The plan is to continue the deployment to build a decadal time series of optical properties. The instrument suite that is installed on this buoy is also briefly described, and sample results are shown to demonstrate the ability of this new system to collect the data at the desired frequency and quality.

2010 ◽  
Vol 7 (12) ◽  
pp. 4083-4103 ◽  
Author(s):  
J. Para ◽  
P. G. Coble ◽  
B. Charrière ◽  
M. Tedetti ◽  
C. Fontana ◽  
...  

Abstract. Seawater samples were collected monthly in surface waters (2 and 5 m depths) of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m−1) in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm−1) in summer than in fall and winter periods (0.017 ± 0.002 nm−1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30–21.94 QSU) and marine humic-like component (peak M; 0.55–5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peaks C and A). Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties, within the hydrological context, pointed out several biotic (in situ biological production, biological production within Rhône River plumes) and abiotic (photobleaching, mixing) factors controlling CDOM transport, production and removal in this highly urbanized coastal area.


2010 ◽  
Vol 7 (4) ◽  
pp. 5675-5718 ◽  
Author(s):  
J. Para ◽  
P. G. Coble ◽  
B. Charrière ◽  
M. Tedetti ◽  
C. Fontana ◽  
...  

Abstract. Seawater samples were collected in surface waters (2 and 5 m depths) of the Bay of Marseilles (Northwestern Mediterranean Sea; 5°17′30′′ E, 43°14′30′′ N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m−1) with in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm−1) in summer than in fall and winter periods (0.017 ± 0.002 nm−1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30–21.94 QSU) and marine humic-like component (peak M; 0.55–5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events may reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peak C). Besides Rhône River plumes, mixing events of the entire water column injected humic (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties, within the hydrological context, pointed out several biotic (in situ biological production, biological production within Rhône River plumes) and abiotic (photobleaching, mixing) factors controlling CDOM transport, production and removal in this highly urbanized coastal area.


Author(s):  
Angiolillo Michela ◽  
Gérigny Olivia ◽  
Valente Tommaso ◽  
Fabri Marie-Claire ◽  
Tambute Eric ◽  
...  

2013 ◽  
Vol 111 (4) ◽  
pp. 390-401 ◽  
Author(s):  
Ana I. Colmenero ◽  
Víctor M. Tuset ◽  
Laura Recasens ◽  
Pilar Sánchez

1990 ◽  
Vol 3 (1-2) ◽  
pp. 25-33 ◽  
Author(s):  
S. Schmidt ◽  
J.L. Reyss ◽  
H.V. Nguyen ◽  
P. Buat-Ménard

2016 ◽  
Vol 175 ◽  
pp. 15-23 ◽  
Author(s):  
Nieves López ◽  
Joan Navarro ◽  
Claudio Barría ◽  
Marta Albo-Puigserver ◽  
Marta Coll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document