scholarly journals High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes

2015 ◽  
Vol 143 (7) ◽  
pp. 2937-2954 ◽  
Author(s):  
Kiran K. Katta ◽  
Ramachandran D. Nair ◽  
Vinod Kumar

Abstract This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.

2021 ◽  
Author(s):  
Adrin Gharakhani

Abstract A compact high-order finite difference method on unstructured meshes is developed for discretization of the unsteady vorticity transport equations (VTE) for 2-D incompressible flow. The algorithm is based on the Flux Reconstruction Method of Huynh [1, 2], extended to evaluate a Poisson equation for the streamfunction to enforce the kinematic relationship between the velocity and vorticity fields while satisfying the continuity equation. Unlike other finite difference methods for the VTE, where the wall vorticity is approximated by finite differencing the second wall-normal derivative of the streamfunction, the new method applies a Neumann boundary condition for the diffusion of vorticity such that it cancels the slip velocity resulting from the solution of the Poisson equation for the streamfunction. This yields a wall vorticity with order of accuracy consistent with that of the overall solution. In this paper, the high-order VTE solver is formulated and results presented to demonstrate the accuracy and convergence rate of the Poisson solution, as well as the VTE solver using benchmark problems of 2-D flow in lid-driven cavity and backward facing step channel at various Reynolds numbers.


2015 ◽  
Vol 18 (4) ◽  
pp. 901-930 ◽  
Author(s):  
Ziyao Sun ◽  
Honghui Teng ◽  
Feng Xiao

AbstractThis paper presents a new and better suited formulation to implement the limiting projection to high-order schemes that make use of high-order local reconstructions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-moment Constrained finite Volume with WENO limiter of 4th order) method, is an extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative (gradient or slope) at the cell center as an additional constraint for the cell-wise local reconstruction. The gradient is computed from a limiting projection using the WENO (weighted essentially non-oscillatory) reconstruction that is built from the nodal values at 5 solution points within 3 neighboring cells. Different from other existing methods where only the cell-average value is used in the WENO reconstruction, the present method takes account of the solution structure within each mesh cell, and thus minimizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and is of significant advantage in algorithmic simplicity and computational efficiency. Numerical results of one and two dimensional benchmark tests for scalar and Euler conservation laws are shown to verify the accuracy and oscillation-less property of the scheme.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1885
Author(s):  
Shijian Lin ◽  
Qi Luo ◽  
Hongze Leng ◽  
Junqiang Song

We propose a new multi-moment numerical solver for hyperbolic conservation laws by using the alternating polynomial reconstruction approach. Unlike existing multi-moment schemes, our approach updates model variables by implementing two polynomial reconstructions alternately. First, Hermite interpolation reconstructs the solution within the cell by matching the point-based variables containing both physical values and their spatial derivatives. Then the reconstructed solution is updated by the Euler method. Second, we solve a constrained least-squares problem to correct the updated solution to preserve the conservation laws. Our method enjoys the advantages of a compact numerical stencil and high-order accuracy. Fourier analysis also indicates that our method allows a larger CFL number compared with many other high-order schemes. By adding a proper amount of artificial viscosity, shock waves and other discontinuities can also be computed accurately and sharply without solving an approximated Riemann problem.


2014 ◽  
Vol 16 (3) ◽  
pp. 718-763 ◽  
Author(s):  
Raphaël Loubère ◽  
Michael Dumbser ◽  
Steven Diot

AbstractIn this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions witha posterioridetection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.


Sign in / Sign up

Export Citation Format

Share Document