high order accuracy
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 40)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 47 (4) ◽  
pp. 1-26
Author(s):  
Patrick E. Farrell ◽  
Robert C. Kirby ◽  
Jorge Marchena-Menéndez

While implicit Runge–Kutta (RK) methods possess high order accuracy and important stability properties, implementation difficulties and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present Irksome , a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our solver techniques for various problems.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2957
Author(s):  
Jiong Weng ◽  
Xiaojing Liu ◽  
Youhe Zhou ◽  
Jizeng Wang

A space-time fully decoupled wavelet integral collocation method (WICM) with high-order accuracy is proposed for the solution of a class of nonlinear wave equations. With this method, wave equations with various nonlinearities are first transformed into a system of ordinary differential equations (ODEs) with respect to the highest-order spatial derivative values at spatial nodes, in which all the matrices in the resulting nonlinear ODEs are constants over time. As a result, these matrices generated in the spatial discretization do not need to be updated in the time integration, such that a fully decoupling between spatial and temporal discretization can be achieved. A linear multi-step method based on the same wavelet approximation used in the spatial discretization is then employed to solve such a semi-discretization system. By numerically solving several widely considered benchmark problems, including the Klein/sine–Gordon equation and the generalized Benjamin–Bona–Mahony–Burgers equation, we demonstrate that the proposed wavelet algorithm possesses much better accuracy and a faster convergence rate than many existing numerical methods. Most interestingly, the space-associated convergence rate of the present WICM is always about order 6 for different equations with various nonlinearities, which is in the same order with direct approximation of a function in terms of the proposed wavelet approximation scheme. This fact implies that the accuracy of the proposed method is almost independent of the equation order and nonlinearity.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 295
Author(s):  
Shijian Lin ◽  
Qi Luo ◽  
Hongze Leng ◽  
Junqiang Song

We propose a family of multi-moment methods with arbitrary orders of accuracy for the hyperbolic equation via the reconstructed interpolating differential operator (RDO) approach. Reconstruction up to arbitrary order can be achieved on a single cell from properly allocated model variables including spatial derivatives of varying orders. Then we calculate the temporal derivatives of coefficients of the reconstructed polynomial and transform them into the temporal derivatives of the model variables. Unlike the conventional multi-moment methods which evolve different types of moments by deriving different equations, RDO can update all derivatives uniformly via a simple linear transform more efficiently. Based on difference in introducing interaction from adjacent cells, the central RDO and the upwind RDO are proposed. Both schemes enjoy high-order accuracy which is verified by Fourier analysis and numerical experiments.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1626
Author(s):  
Renxuan Tang ◽  
Dongfang Li

In this paper, we use the scalar auxiliary variable (SAV) approach to rewrite the charged particle dynamics as a new family of ODE systems. The systems own a conserved energy. It is shown that a family of symmetrical methods is energy-conserving for a new ODE system but may not be for the original systems. Moreover, the methods have high-order accuracy. Numerical results are given to confirm the theoretical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1885
Author(s):  
Shijian Lin ◽  
Qi Luo ◽  
Hongze Leng ◽  
Junqiang Song

We propose a new multi-moment numerical solver for hyperbolic conservation laws by using the alternating polynomial reconstruction approach. Unlike existing multi-moment schemes, our approach updates model variables by implementing two polynomial reconstructions alternately. First, Hermite interpolation reconstructs the solution within the cell by matching the point-based variables containing both physical values and their spatial derivatives. Then the reconstructed solution is updated by the Euler method. Second, we solve a constrained least-squares problem to correct the updated solution to preserve the conservation laws. Our method enjoys the advantages of a compact numerical stencil and high-order accuracy. Fourier analysis also indicates that our method allows a larger CFL number compared with many other high-order schemes. By adding a proper amount of artificial viscosity, shock waves and other discontinuities can also be computed accurately and sharply without solving an approximated Riemann problem.


Author(s):  
Johannes Markert ◽  
Gregor Gassner ◽  
Stefanie Walch

AbstractIn this paper, a new strategy for a sub-element-based shock capturing for discontinuous Galerkin (DG) approximations is presented. The idea is to interpret a DG element as a collection of data and construct a hierarchy of low-to-high-order discretizations on this set of data, including a first-order finite volume scheme up to the full-order DG scheme. The different DG discretizations are then blended according to sub-element troubled cell indicators, resulting in a final discretization that adaptively blends from low to high order within a single DG element. The goal is to retain as much high-order accuracy as possible, even in simulations with very strong shocks, as, e.g., presented in the Sedov test. The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing. The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.


Author(s):  
Lanyu Li ◽  
Prabu Sellappan ◽  
Peter Schmid ◽  
Jean-Pierre Hickey ◽  
Louis Cattafesta ◽  
...  

Physical conservation laws are inherently Lagrangian. However, analyses in fluid mechanics using the Lagrangian framework are often forgone in favor of those using the Eulerian framework. This is perhaps due to a lack of experimental techniques with high temporal and spatial resolution that track the movement of fluid tracers in a flow domain. The development of time-resolved Particle Tracking Velocimetry/Accelerometry (TR-PTV/A) that measures flows with high seeding density has made the use of the Lagrangian framework more accessible. A challenge facing PTV/A is the need for robust mesh-free numerical schemes that handle random particle locations. Such a scheme can be created with high-order accuracy using Radial Basis Functions (RBFs). RBFs allow direct evaluation of derivatives of vector and scalar fields at random locations with infinite-order smoothness. The current work uses RBF-based differential schemes to develop a post-processing tool for PTV/A data, which can accurately evaluate spatial derivatives directly from Lagrangian particle tracks. This RBF-based strain/rotation-rate tensor evaluation tool is validated with two and three-dimensional flows from analytical solutions and is then tested with experimental data measured by a multi-pulse PTV/A system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dongwook Shin ◽  
Yoongu Hwang ◽  
Eun-Jae Park

Abstract In this work, we develop novel adaptive hybrid discontinuous Galerkin algorithms for second-order elliptic problems. For this, two types of reliable and efficient, modulo a data-oscillation term, and fully computable a posteriori error estimators are developed: the first one is a simple residual type error estimator, and the second is a flux reconstruction based error estimator of a guaranteed type for polynomial approximations of any degree by using a simple postprocessing. These estimators can achieve high-order accuracy for both smooth and nonsmooth problems even with high-order approximations. In order to enhance the performance of adaptive algorithms, we introduce 𝐾-means clustering based marking strategy. The choice of marking parameter is crucial in the performance of the existing strategy such as maximum and bulk criteria; however, the optimal choice is not known. The new strategy has no unknown parameter. Several numerical examples are given to illustrate the performance of the new marking strategy along with our estimators.


Sign in / Sign up

Export Citation Format

Share Document