Using a Clinical Decision Support Tool to Increase Chlamydia Screening Across a Large Primary Care Pediatric Network

2018 ◽  
Vol 57 (14) ◽  
pp. 1638-1641
Author(s):  
David Karas ◽  
Stephen Sondike ◽  
James Fitzgibbon ◽  
Mark Redding ◽  
Miraides Brown

We aim to demonstrate increased chlamydia screening across a large pediatric network using an electronic health record–based intervention. We developed a pop-up notification that alerted providers that chlamydia screening was recommended during a well adolescent visit, when appropriate. We compared chlamydia screening rates before and after the implementation of the alert. The screening rate for chlamydia improved from 2.40% in the year before intervention to 5.01% in the year after intervention ( P < .01). In conclusion, an electronic health record intervention was successfully able to significantly increase rates of chlamydia screening across a large pediatric network.

2020 ◽  
Vol 41 (S1) ◽  
pp. s368-s368
Author(s):  
Mary Acree ◽  
Kamaljit Singh ◽  
Urmila Ravichandran ◽  
Jennifer Grant ◽  
Gary Fleming ◽  
...  

Background: Empiric antibiotic selection is challenging and requires knowledge of the local antibiogram, national guidelines and patient-specific factors, such as drug allergy and recent antibiotic exposure. Clinical decision support for empiric antibiotic selection has the potential to improve adherence to guidelines and improve patient outcomes. Methods: At NorthShore University HealthSystem, a 4-hospital, 789 bed system, an automated point-of-care decision support tool referred to as Antimicrobial Stewardship Assistance Program (ASAP) was created for empiric antibiotic selection for 4 infectious syndromes: pneumonia, skin and soft-tissue infections, urinary tract infection, and intra-abdominal infection. The tool input data from the electronic health record, which can be modified by any user. Using an algorithm created with electronic health record data, antibiogram data, and national guidelines, the tool produces an antibiotic recommendation that can be ordered via a link to order entry. If the tool identifies a patient with a high likelihood for a multidrug-resistant infection, a consultation by an infectious diseases specialist is recommended. Utilization of the tool and associated outcomes were evaluated from July 2018 to May 2019. Results: The ASAP tool was executed by 140 unique, noninfectious diseases providers 790 times. The tool was utilized most often for pneumonia (194 tool uses), followed by urinary tract infection (166 tool uses). The most common provider type to use the tool was an internal medicine hospitalist. The tool increased adherence to the recommended antibiotic regimen for each condition. Antibiotic appropriateness was assessed by an infectious diseases physician. Antibiotics were considered appropriate when they were similar to the antibiotic regimen recommended by the ASAP. Inappropriate antibiotics were classified as broad or narrow. When antibiotic coverage was appropriate, hospital length of stay was statistically significantly shorter (4.8 days vs 6.8 days for broad antibiotics vs 7.4 days for narrow antibiotics; P < .01). No significant differences were identified in mortality or readmission. Conclusions: A clinical decision support tool in the electronic health record can improve adherence to recommended empiric antibiotic therapy. Use of appropriate antibiotics recommended by such a tool can reduce hospital length of stay.Funding: NoneDisclosures: None


Author(s):  
Kathryn Dzintars ◽  
Valeria M Fabre ◽  
Edina Avdic ◽  
Janessa Smith ◽  
Victoria Adams-Sommer ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this manuscript is to describe our experience developing an antimicrobial stewardship (AS) module as a clinical decision support tool in the Epic electronic health record (EHR). Summary Clinical decision support systems within the EHR can be used to decrease use of broad-spectrum antibiotics, improve antibiotic selection and dosing, decrease adverse effects, reduce antibiotic costs, and reduce the development of antibiotic resistance. The Johns Hopkins Hospital constructed an AS module within Epic. Customized stewardship alerts and scoring systems were developed to triage patients requiring stewardship intervention. This required a multidisciplinary approach with a team comprising AS physicians and pharmacists and Epic information technology personnel, with assistance from clinical microbiology and infection control when necessary. In addition, an intervention database was enhanced with stewardship-specific interventions, and workbench reports were developed specific to AS needs. We herein review the process, advantages, and challenges associated with the development of the Epic AS module. Conclusion Customizing an AS module in an EHR requires significant time and expertise in antimicrobials; however, AS modules have the potential to improve the efficiency of AS personnel in performing daily stewardship activities and reporting through a single system.


2019 ◽  
Vol 26 (11) ◽  
pp. 1323-1332 ◽  
Author(s):  
Anja Rieckert ◽  
Anne-Lisa Teichmann ◽  
Eva Drewelow ◽  
Celine Kriechmayr ◽  
Giuliano Piccoliori ◽  
...  

Abstract Objective We sought to investigate the experiences of general practitioners (GPs) with an electronic decision support tool to reduce inappropriate polypharmacy in older patients (the PRIMA-eDS [Polypharmacy in chronic diseases: Reduction of Inappropriate Medication and Adverse drug events in older populations by electronic Decision Support] tool) in a multinational sample of GPs and to quantify the findings from a prior qualitative study on the PRIMA-eDS-tool. Materials and Methods Alongside the cluster randomized controlled PRIMA-eDS trial, a survey was conducted in all 5 participating study centers (Bolzano, Italy; Manchester, United Kingdom; Salzburg, Austria; Rostock, Germany; and Witten, Germany) between October 2016 and July 2017. Data were analyzed using descriptive statistics and chi-square tests. Results Ninety-one (n = 160) percent of the 176 questionnaires were returned. Thirty-two percent of the respondents reported that they did not cease drugs because of the medication check. The 68% who had discontinued drugs comprise 57% who had stopped on average 1 drug and 11% who had stopped 2 drugs or more per patient. The PRIMA-eDS tool was found to be useful (69%) and the recommendations were found to help to increase awareness (86%). The greatest barrier to implementing deprescribing recommendations was the perceived necessity of the medication (69%). The majority of respondents (65%) would use the electronic medication check in routine practice if it was part of the electronic health record. Conclusions GPs generally viewed the PRIMA-eDS medication check as useful and as informative. Recommendations were not always followed due to various reasons. Many GPs would use the medication check if integrated into the electronic health record.


2020 ◽  
Vol 10 (3) ◽  
pp. 103
Author(s):  
David Gallagher ◽  
Congwen Zhao ◽  
Amanda Brucker ◽  
Jennifer Massengill ◽  
Patricia Kramer ◽  
...  

Unplanned hospital readmissions represent a significant health care value problem with high costs and poor quality of care. A significant percentage of readmissions could be prevented if clinical inpatient teams were better able to predict which patients were at higher risk for readmission. Many of the current clinical decision support models that predict readmissions are not configured to integrate closely with the electronic health record or alert providers in real-time prior to discharge about a patient’s risk for readmission. We report on the implementation and monitoring of the Epic electronic health record—“Unplanned readmission model version 1”—over 2 years from 1/1/2018–12/31/2019. For patients discharged during this time, the predictive capability to discern high risk discharges was reflected in an AUC/C-statistic at our three hospitals of 0.716–0.760 for all patients and 0.676–0.695 for general medicine patients. The model had a positive predictive value ranging from 0.217–0.248 for all patients. We also present our methods in monitoring the model over time for trend changes, as well as common readmissions reduction strategies triggered by the score.


2021 ◽  
Vol 147 ◽  
pp. 104349
Author(s):  
Thomas McGinn ◽  
David A. Feldstein ◽  
Isabel Barata ◽  
Emily Heineman ◽  
Joshua Ross ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204209862199609
Author(s):  
Florine A. Berger ◽  
Heleen van der Sijs ◽  
Teun van Gelder ◽  
Patricia M. L. A. van den Bemt

Introduction: The handling of drug–drug interactions regarding QTc-prolongation (QT-DDIs) is not well defined. A clinical decision support (CDS) tool will support risk management of QT-DDIs. Therefore, we studied the effect of a CDS tool on the proportion of QT-DDIs for which an intervention was considered by pharmacists. Methods: An intervention study was performed using a pre- and post-design in 20 community pharmacies in The Netherlands. All QT-DDIs that occurred during a before- and after-period of three months were included. The impact of the use of a CDS tool to support the handling of QT-DDIs was studied. For each QT-DDI, handling of the QT-DDI and patient characteristics were extracted from the pharmacy information system. Primary outcome was the proportion of QT-DDIs with an intervention. Secondary outcomes were the type of interventions and the time associated with handling QT-DDIs. Logistic regression analysis was used to analyse the primary outcome. Results: Two hundred and forty-four QT-DDIs pre-CDS tool and 157 QT-DDIs post-CDS tool were included. Pharmacists intervened in 43.0% and 35.7% of the QT-DDIs pre- and post-CDS tool respectively (odds ratio 0.74; 95% confidence interval 0.49–1.11). Substitution of interacting agents was the most frequent intervention. Pharmacists spent 20.8 ± 3.5 min (mean ± SD) on handling QT-DDIs pre-CDS tool, which was reduced to 14.9 ± 2.4 min (mean ± SD) post-CDS tool. Of these, 4.5 ± 0.7 min (mean ± SD) were spent on the CDS tool. Conclusion: The CDS tool might be a first step to developing a tool to manage QT-DDIs via a structured approach. Improvement of the tool is needed in order to increase its diagnostic value and reduce redundant QT-DDI alerts. Plain Language Summary The use of a tool to support the handling of QTc-prolonging drug interactions in community pharmacies Introduction: Several drugs have the ability to cause heart rhythm disturbances as a rare side effect. This rhythm disturbance is called QTc-interval prolongation. It may result in cardiac arrest. For health care professionals, such as physicians and pharmacists, it is difficult to decide whether or not it is safe to proceed treating a patient with combinations of two or more of these QT-prolonging drugs. Recently, a tool was developed that supports the risk management of these QT drug–drug interactions (QT-DDIs). Methods: In this study, we studied the effect of this tool on the proportion of QT-DDIs for which an intervention was considered by pharmacists. An intervention study was performed using a pre- and post-design in 20 community pharmacies in The Netherlands. All QT-DDIs that occurred during a before- and after-period of 3 months were included. Results: Two hundred and forty-four QT-DDIs pre-implementation of the tool and 157 QT-DDIs post-implementation of the tool were included. Pharmacists intervened in 43.0% of the QT-DDIs before the tool was implemented and in 35.7% after implementation of the tool. Substitution of one of the interacting agents was the most frequent intervention. Pharmacists spent less time on handling QT-DDIs when the tool was used. Conclusion: The clinical decision support tool might be a first step to developing a tool to manage QT-DDIs via a structured approach.


2021 ◽  
Author(s):  
Kaio Bin ◽  
Adler Araújo Ribeiro Melo ◽  
José Guilherme Franco Da Rocha ◽  
Renata Pivi De Almeida ◽  
Vilson Cobello Junior ◽  
...  

BACKGROUND AIRA is an AI designed to reduce the time that doctors dedicate filling out EHR, winner of the first edition of MIT Hacking Medicine held in Brazil in 2020. As a proof of concept, AIRA was implemented in administrative process before its application in a medical process. OBJECTIVE The aim of the study is to determinate the impact of AIRA by eliminating the Medical Care Registration (MCR) on Electronic Health Record (EHR) by Administrative Officer. METHODS This is a comparative before-and-after study following the guidance “Evaluating digital health products” from Public Health England. An Artificial Intelligence named AIRA was created and implemented at CEAC (Employee Attention Center) from HCFMUSP. A total of 25,507 attendances were evaluated along 2020 for determinate AIRA´s impact. Total of MCR, time of health screening and time between the end of the screening and the beginning of medical care, were compared in the pre and post AIRA periods. RESULTS AIRA eliminated the need for Medical Care Registration by Administrative Officer in 92% (p<0.0001). The nurse´s time of health screening increased 16% (p<0.0001) during the implementation, and 13% (p<0.0001) until three months after the implementation, but reduced in 4% three months after implementation (p<0.0001). The mean and median total time to Medical Care after the nurse’ Screening was decreased in 30% (p<0.0001) and 41% (p<0.0001) respectively. CONCLUSIONS The implementation of AIRA reduced the time to medical care in an urgent care after the nurse´ screening, by eliminating non-value-added activity the Medical Care Registration on Electronic Health Record (EHR) by Administrative Officer.


2014 ◽  
Vol 05 (02) ◽  
pp. 368-387 ◽  
Author(s):  
K. Cato ◽  
B. Sheehan ◽  
S. Patel ◽  
J. Duchon ◽  
P. DeLaMora ◽  
...  

SummaryObjective: To develop and implement a clinical decision support (CDS) tool to improve antibiotic prescribing in neonatal intensive care units (NICUs) and to evaluate user acceptance of the CDS tool.Methods: Following sociotechnical analysis of NICU prescribing processes, a CDS tool for empiric and targeted antimicrobial therapy for healthcare-associated infections (HAIs) was developed and incorporated into a commercial electronic health record (EHR) in two NICUs. User logs were reviewed and NICU prescribers were surveyed for their perceptions of the CDS tool.Results: The CDS tool aggregated selected laboratory results, including culture results, to make treatment recommendations for common clinical scenarios. From July 2010 to May 2012, 1,303 CDS activations for 452 patients occurred representing 22% of patients prescribed antibiotics during this period. While NICU clinicians viewed two culture results per tool activation, prescribing recommendations were viewed during only 15% of activations. Most (63%) survey respondents were aware of the CDS tool, but fewer (37%) used it during their most recent NICU rotation. Respondents considered the most useful features to be summarized culture results (43%) and antibiotic recommendations (48%).Discussion: During the study period, the CDS tool functionality was hindered by EHR upgrades, implementation of a new laboratory information system, and changes to antimicrobial testing methodologies. Loss of functionality may have reduced viewing antibiotic recommendations. In contrast, viewing culture results was frequently performed, likely because this feature was perceived as useful and functionality was preserved.Conclusion: To improve CDS tool visibility and usefulness, we recommend early user and information technology team involvement which would facilitate use and mitigate implementation challenges.Citation: Hum RS, Cato K, Sheehan B, Patel S, Duchon J, DeLaMora P, Ferng YH, Graham P, Vawdrey DK, Perlman J, Larson E, Saiman L. Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Appl Clin Inf 2014; 5: 368–387 http://dx.doi.org/10.4338/ACI-2013-09-RA-0069


Sign in / Sign up

Export Citation Format

Share Document