scholarly journals A novel distributed event-triggered control for reactive power sharing based on hierarchical structure in islanded microgrid

2020 ◽  
pp. 002029402092475
Author(s):  
Yingwen Long ◽  
Yanxiang Zhu ◽  
Wei Zhang

Due to line impedance mismatches, nonlinear loads and other reasons, the traditional droop control algorithms have great limitations on the control of reactive power sharing. Distributed control algorithms based on hierarchical structure have become an effective approach for reactive power sharing compared with traditional centralized control methods. In this paper, an event-triggered control algorithm based on stability analysis of Lyapunov method is put forward in order to satisfy the demand of low-bandwidth communication for distributed generator in islanded microgrid. Subsequently, a distributed hierarchical control scheme adopting proposed event-triggered strategy is designed to achieve proportional reactive power sharing in an islanded microgrid. Finally, the feasibility and validity of the proposed algorithm are further verified in MATLAB/Simulink environment.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2710 ◽  
Author(s):  
Li Yu ◽  
Di Shi ◽  
Guangyue Xu ◽  
Xiaobin Guo ◽  
Zhen Jiang ◽  
...  

The hierarchical control architecture, including layers of primary, secondary and tertiary controls, is becoming the standard operating paradigm for microgrids (MGs). Two major factors that limit the adoption of existing hierarchical control in microgrid are the low accuracy in reactive power sharing and the requirement for complex communication infrastructure. This paper addresses this problem by proposing a novel distributed primary and secondary control for distributed generators dispersed in a multi-bus microgrid. The proposed method realizes voltage control and accurate reactive power sharing in a distributed manner using minimum communication. Each distributed generator only needs its own information and minimum information from its neighboring units. Topology of the network can be flexible which supports the plug-and-play feature of microgrids. In a distribution system, high R/X ratio and system imbalance can no longer be neglected and thus the sequence component analysis and virtual impedance are implemented in the proposed control framework. The proposed framework is validated by simulation results on a MG testbed modified from the IEEE 13-bus distribution system.


2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

2015 ◽  
Vol 799-800 ◽  
pp. 1272-1277
Author(s):  
Chia Hung Lin ◽  
Chao Shun Chen ◽  
Cheng Ting Hsu ◽  
Wei Lin Hsieh ◽  
Yih Der Lee ◽  
...  

This paper discusses the use of centralized control method in an Intelligent Energy Management System (iEMS) to prevent voltage violation after load transfer between distribution feeders with high PV penetration level. The proposed method comprises three control modes with different control algorithms for regulating both reactive and active power output of PV inverters in a distribution system with multiple PV installations. Before the execution of load transfer, the total reactive power compensation required at the critical Point of Common Coupling (PCC) is solved by the reactance of distribution feeder line segment to prevent system voltage violation. With the proposed control algorithms, the iEMS dispatches total reactive power compensation among PV systems according to the reactance of line segment and issues the control command to each PV inverter for adjustment of PV power generation so that the ancillary service of voltage support can be provided by all PV systems in a fairer manner. A practical Cimei island distribution feeder pair is selected for computer simulation to verify the effectiveness of the proposed control method after load transfer between two feeders.


2020 ◽  
Vol 11 (3) ◽  
pp. 1624-1635 ◽  
Author(s):  
Dharmendra Kumar Dheer ◽  
Yusuf Gupta ◽  
Suryanarayana Doolla

Sign in / Sign up

Export Citation Format

Share Document