impedance control
Recently Published Documents


TOTAL DOCUMENTS

1901
(FIVE YEARS 459)

H-INDEX

62
(FIVE YEARS 11)

2022 ◽  
Vol 75 ◽  
pp. 102291
Author(s):  
Anbang Zhai ◽  
Haiyun Zhang ◽  
Jin Wang ◽  
Guodong Lu ◽  
Junjie Li ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Namita Anil Kumar ◽  
Shawanee Patrick ◽  
Woolim Hong ◽  
Pilwon Hur

User customization of a lower-limb powered Prosthesis controller remains a challenge to this date. Controllers adopting impedance control strategies mandate tedious tuning for every joint, terrain condition, and user. Moreover, no relationship is known to exist between the joint control parameters and the slope condition. We present a control framework composed of impedance control and trajectory tracking, with the transitioning between the two strategies facilitated by Bezier curves. The impedance (stiffness and damping) functions vary as polynomials during the stance phase for both the knee and ankle. These functions were derived through least squares optimization with healthy human sloped walking data. The functions derived for each slope condition were simplified using principal component analysis. The weights of the resulting basis functions were found to obey monotonic trends within upslope and downslope walking, proving the existence of a relationship between the joint parameter functions and the slope angle. Using these trends, one can now design a controller for any given slope angle. Amputee and able-bodied walking trials with a powered transfemoral prosthesis revealed the controller to generate a healthy human gait. The observed kinematic and kinetic trends with the slope angle were similar to those found in healthy walking.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Jun Dai ◽  
Yi Zhang ◽  
Hua Deng

Existing hybrid force/position control algorithms mostly explicitly contain a dynamic model. Moreover, force and position controllers will be switched frequently. To solve the above problems, a novel voltage-based weighted hybrid force/position control algorithm is proposed for redundant robot manipulators. Firstly, mapping between voltage and terminal position and orientation is established so that the designed controller can be simplified by adopting the motor current as the feedback to replace the tedious calculation of the dynamic model. Secondly, a voltage-based weighted hybrid force/position control algorithm is proposed to eliminate the selection matrix. Force and position control laws are summed directly through a weighted way to avoid the problems of space decomposition and switching. Thirdly, the stability is proven using Lyapunov stability theory, then the selection method for weighted coefficient is provided. Fourthly, comparative simulations are performed. Results show that the proposed algorithm is suitable for impedance control and hybrid force/position control and can compensate for their deficiencies. Lastly, the transport experiment in the YZ plane is conducted. Results show that position and force accuracies in the Y- and Z-axis directions are 3.489 × 10−4 and 7.313 × 10−4 m and 1.238 × 10−1 and 1.997 × 10−1 N, respectively. Accordingly, it can effectively improve the operation capability and control accuracy.


Author(s):  
Guanghui Liu ◽  
Bing Han

We propose a cascaded impedance control algorithm based on a virtual dynamics model (VDM) to achieve robust and effective mechanical impedance for a robot interacting with unknown environments. This cascaded controller consists of an internal loop of virtual impedance control based on a VDM and an external loop of impedance reference control. The VDM-based virtual impedance control can achieve the same effect as the conventional admittance control; its intermediate output of force/torque serves as the input for the external loop reference impedance control. Therefore, this cascaded controller shows superior performance by combining the advantages of admittance control and impedance control. We evaluate the controller in multiple-contact experiments on a six-degrees of freedom (6-DOF) industrial robot manipulator. The result shows that under various contact situations such as soft and rigid surfaces and free space, the proposed method can rapidly track the target and effectively maintain stability. In the experiments conducted on the robot in contact with various environments, the proposed control method reduced the steady-state error by more than 20% compared with the conventional admittance control.


Author(s):  
Zhehao Jin ◽  
Andong Liu ◽  
Wen-An Zhang ◽  
Li Yu

2021 ◽  
Vol 70 (12) ◽  
pp. 1976-1983
Author(s):  
Hyunup Kang ◽  
Jehwi Yoo ◽  
Kunhee Ryu ◽  
Juhoon Back

2021 ◽  
Author(s):  
Bart Gerlagh ◽  
Federico Califano ◽  
Stefano Stramigioli ◽  
Wesley Roozing

Sign in / Sign up

Export Citation Format

Share Document