Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation

2011 ◽  
Vol 31 (6) ◽  
pp. 839-852 ◽  
Author(s):  
Samer A. Kharroubi ◽  
Alan Brennan ◽  
Mark Strong

Expected value of sample information (EVSI) involves simulating data collection, Bayesian updating, and reexamining decisions. Bayesian updating in incomplete data models typically requires Markov chain Monte Carlo (MCMC). This article describes a revision to a form of Bayesian Laplace approximation for EVSI computation to support decisions in incomplete data models. The authors develop the approximation, setting out the mathematics for the likelihood and log posterior density function, which are necessary for the method. They compare the accuracy of EVSI estimates in a case study cost-effectiveness model using first- and second-order versions of their approximation formula and traditional Monte Carlo. Computational efficiency gains depend on the complexity of the net benefit functions, the number of inner-level Monte Carlo samples used, and the requirement or otherwise for MCMC methods to produce the posterior distributions. This methodology provides a new and valuable approach for EVSI computation in health economic decision models and potential wider benefits in many fields requiring Bayesian approximation.

2020 ◽  
Vol 40 (3) ◽  
pp. 314-326 ◽  
Author(s):  
Anna Heath ◽  
Natalia Kunst ◽  
Christopher Jackson ◽  
Mark Strong ◽  
Fernando Alarid-Escudero ◽  
...  

Background. Investing efficiently in future research to improve policy decisions is an important goal. Expected value of sample information (EVSI) can be used to select the specific design and sample size of a proposed study by assessing the benefit of a range of different studies. Estimating EVSI with the standard nested Monte Carlo algorithm has a notoriously high computational burden, especially when using a complex decision model or when optimizing over study sample sizes and designs. Recently, several more efficient EVSI approximation methods have been developed. However, these approximation methods have not been compared, and therefore their comparative performance across different examples has not been explored. Methods. We compared 4 EVSI methods using 3 previously published health economic models. The examples were chosen to represent a range of real-world contexts, including situations with multiple study outcomes, missing data, and data from an observational rather than a randomized study. The computational speed and accuracy of each method were compared. Results. In each example, the approximation methods took minutes or hours to achieve reasonably accurate EVSI estimates, whereas the traditional Monte Carlo method took weeks. Specific methods are particularly suited to problems where we wish to compare multiple proposed sample sizes, when the proposed sample size is large, or when the health economic model is computationally expensive. Conclusions. As all the evaluated methods gave estimates similar to those given by traditional Monte Carlo, we suggest that EVSI can now be efficiently computed with confidence in realistic examples. No systematically superior EVSI computation method exists as the properties of the different methods depend on the underlying health economic model, data generation process, and user expertise.


2020 ◽  
Vol 8 (3) ◽  
pp. 1236-1259
Author(s):  
Tomohiko Hironaka ◽  
Michael B. Giles ◽  
Takashi Goda ◽  
Howard Thom

Author(s):  
Kerui Du ◽  
Yonghui Zhang ◽  
Qiankun Zhou

In this article, we describe the implementation of fitting partially linear functional-coefficient panel models with fixed effects proposed by An, Hsiao, and Li [2016, Semiparametric estimation of partially linear varying coefficient panel data models in Essays in Honor of Aman Ullah ( Advances in Econometrics, Volume 36)] and Zhang and Zhou (Forthcoming, Econometric Reviews). Three new commands xtplfc, ivxtplfc, and xtdplfc are introduced and illustrated through Monte Carlo simulations to exemplify the effectiveness of these estimators.


Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.


Sign in / Sign up

Export Citation Format

Share Document