New Methodology for Smoothing Freeway Loop Detector Data: Introduction to Digital Filtering

Author(s):  
Benjamin A. Coifman

A new methodology has been developed for smoothing loop detector data based on digital signal processing. After introducing basic signal processing theory, existing smoothing techniques like fixed-time averages, cumulative sums, and moving-time averages—all subsets of the larger digital signal processing methodology—are described. Nontraditional smoothing techniques based on custom digital filter design are then presented, specifically, low-pass filters that “pass” slowly changing features of the detector data unchanged while attenuating rapidly changing features. Custom digital filter design gives more control over the smoothing process than do traditional smoothing methods. In particular, the amount of amplification or attenuation at a given frequency (e.g., rapidly or slowly changing features) can be set. Whether a custom filter or a traditional smoothing process is used, an understanding of the frequency response can increase the usefulness of the resulting data by clarifying the limitations of the given smoothing process. To illustrate this, several smoothing processes are presented and contrasted using the same data set. The use of a custom digital filter is demonstrated in three practical applications: an examination of the bivariate flow-occupancy relationship and use of the filtering process to eliminate unstable disturbances from the data set, speed estimation from a single detector under congested conditions, and temporal issues relating to shock wave and fluctuation propagation specifically.

2013 ◽  
Vol 684 ◽  
pp. 653-656
Author(s):  
Yu Jian Du ◽  
Zu Bin Chen ◽  
Teng Yu ◽  
Yang Yang

With the information era and the advent of the digital world, digital signal processing has become extremely important in today's one of the disciplines and technical fields.Digital signal processing in seismic signal ,communications, voice, image, automatic control radar, and other fields has been widely used.In this paper,I design several kind of FIR digital filters based on virtual instrument to solve the problem that signal noise reduction.


2020 ◽  
Vol 10 (24) ◽  
pp. 9052
Author(s):  
Pavel Lyakhov ◽  
Maria Valueva ◽  
Georgii Valuev ◽  
Nikolai Nagornov

This paper proposes new digital filter architecture based on a modified multiply-accumulate (MAC) unit architecture called truncated MAC (TMAC), with the aim of increasing the performance of digital filtering. This paper provides a theoretical analysis of the proposed TMAC units and their hardware simulation. Theoretical analysis demonstrated that replacing conventional MAC units with modified TMAC units, as the basis for the implementation of digital filters, can theoretically reduce the filtering time by 29.86%. Hardware simulation showed that TMAC units increased the performance of digital filters by up to 10.89% compared to digital filters using conventional MAC units, but were associated with increased hardware costs. The results of this research can be used in the theory of digital signal processing to solve practical problems such as noise reduction, amplification and suppression of the frequency spectrum, interpolation, decimation, equalization and many others.


2004 ◽  
Vol 13 (05) ◽  
pp. 1105-1110 ◽  
Author(s):  
YAN WU

This paper gives a simple proof for the positiveness of two important symmetric Toeplitz matrices used in communication and signal processing. It utilizes the shifting property of a so-called Uniformly Band-Restricted (UBR) function, which is the generating function for a generic functional symmetric matrix. It is shown that the functional symmetric matrix is positive definite if the UBR function is evaluated at a sequence of distinct real numbers.


2012 ◽  
Vol 49 (3) ◽  
pp. 310-320 ◽  
Author(s):  
Patrick Gaydecki

Signal Wizard Systems® is a digital signal processing (DSP) research venture within the School of EEE at the University of Manchester, UK. It specialises in the development and supply of real-time DSP products for audio signal analysis and processing. The unique and underpinning philosophy of these products is their ease of use. The systems require minimal knowledge of DSP theory on the part of the user and none of the mathematics associated with digital filter design. Filters and other algorithms can be designed in seconds, downloaded and executed in real time with just a few mouse clicks. Since 2004 Signal Wizard products have been sold all over the world for applications ranging from noise suppression, adaptive filtering and system modelling to musical instrument research. In particular, their ease of use ensures that they are ideally suited for teaching simple and more advanced concepts in DSP both at undergraduate and postgraduate level. For this purpose, a DSP laboratory teaching package has been developed using the Signal Wizard range of devices, and has proven an invaluable tool for training our student cohort in the practical aspects of DSP engineering design and programming.


Sign in / Sign up

Export Citation Format

Share Document