Adaptive particle swarm optimization with population diversity control and its application in tandem blade optimization

Author(s):  
Zhaoyun Song ◽  
Bo Liu ◽  
Hao Cheng

This paper proposes a new variant of particle swarm optimization, namely adaptive particle swarm optimization with population diversity control (APSO-PDC), to improve the performance of particle swarm optimization. APSO-PDC is formulated based on adaptive selection of particle roles, population diversity control, and adaptive control of parameters. The adaptive selection of particle roles which combines the evolutionary state and dynamic particle state estimation method will sort the particles into three roles to let different particles execute different search tasks during optimization process. The adaptive control of parameters which is created based on the evolutionary state and particle roles encourages the exploitation ability and enhances the algorithm’s convergence speed. The population diversity control which combines comprehensive learning strategy of the comprehensive learning particle swarm optimizer with evolutionary state to update the individual best position strengthens exploration ability and thus increases the algorithm’s robustness toward the premature convergence issue. The performance of APSO-PDC is comprehensively evaluated by 21 unimodal and multimodal functions with or without rotation. The results indicate APSO-PDC has more preferable searching accuracy, searching reliability, and convergence speed than the other well-established particle swarm optimization variants. Finally, compared with other six particle swarm optimization variants, APSO-PDC shows satisfactory performance in optimizing tandem blade. This excellent performance proves that APSO-PDC has a better control of swarm exploration and exploitation abilities.

Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Sign in / Sign up

Export Citation Format

Share Document