evolutionary state
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1599
Author(s):  
Bowen Wu ◽  
Liangkuan Zhu ◽  
Jun Cao ◽  
Jingyu Wang

Multilevel thresholding segmentation of color images plays an important role in many fields. The pivotal procedure of this technique is determining the specific threshold of the images. In this paper, a hybrid preaching optimization algorithm (HPOA) for color image segmentation is proposed. Firstly, the evolutionary state strategy is adopted to evaluate the evolutionary factors in each iteration. With the introduction of the evolutionary state, the proposed algorithm has more balanced exploration-exploitation compared with the original POA. Secondly, in order to prevent premature convergence, a randomly occurring time-delay is introduced into HPOA in a distributed manner. The expression of the time-delay is inspired by particle swarm optimization and reflects the history of previous personal optimum and global optimum. To better verify the effectiveness of the proposed method, eight well-known benchmark functions are employed to evaluate HPOA. In the interim, seven state-of-the-art algorithms are utilized to compare with HPOA in the terms of accuracy, convergence, and statistical analysis. On this basis, an excellent multilevel thresholding image segmentation method is proposed in this paper. Finally, to further illustrate the potential, experiments are respectively conducted on three different groups of Berkeley images. The quality of a segmented image is evaluated by an array of metrics including feature similarity index (FSIM), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Kapur entropy values. The experimental results reveal that the proposed method significantly outperforms other algorithms and has remarkable and promising performance for multilevel thresholding color image segmentation.


Author(s):  
Václav Paris

Atavism plays a central role in James Joyce’s Ulysses. Describing the return of an earlier evolutionary state in the present, atavism, at the beginning of the twentieth century, was loosely associated both with the epic genre (itself a kind of fossil) and with supposedly less-developed nations. This chapter argues that Joyce shaped Ulysses as a response to both associations. Joyce rejected the idea that literature evolves or improves through history. He also recognized that Ireland lost out when seen through the hierarchies of social Darwinism. In order to counter both, he presented Ireland’s modernity in terms of Homer’s Odyssey. Bringing back the deep past as radically contemporary, Joyce’s fiction questions our assumptions about the archaic and primitive as well as the progressive nature of national and literary history. In Ulysses, scientific ideas of biological and literary evolution are subordinated into Joyce’s own idiosyncratic vitalism to produce a new and quite queer national vision. In a series of detailed readings of various episodes, including “Oxen of the Sun,” “Cyclops,” and “Proteus,” the chapter establishes the logic of Joyce’s imagined lifeword. It then suggests how Joyce’s work on atavism reveals a larger trend in modernist epic fiction, opening up to this book’s rereading of the genre more generally.


2020 ◽  
Author(s):  
Cátia José Neves ◽  
Maor Matzrafi ◽  
Meik Thiele ◽  
Anne Lorant ◽  
Mohsen B Mesgaran ◽  
...  

Abstract Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well suited model system to study sex determination in plants. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole genome sequencing of male and female pools from two independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex linked genes. Consequently, we employed an alignment free k-mer comparison which enabled us to identify a large number of male specific k-mers. We assembled male specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex determination system in the species. We were able to identify the potential Y chromosome in the A. palmeri draft genome sequence as 90 % of our male specific sequence aligned to a single scaffold. Based on our findings we suggest an intermediate evolutionary state of dioecy with a young Y chromosome in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.


2020 ◽  
Vol 499 (3) ◽  
pp. 4394-4417
Author(s):  
María José Maureira ◽  
Héctor G Arce ◽  
Michael M Dunham ◽  
Diego Mardones ◽  
Andrés E Guzmán ◽  
...  

ABSTRACT We present ALMA 3 mm molecular line and continuum observations with a resolution of ∼3.5 arcsec towards five first hydrostatic core (FHSC) candidates (L1451-mm, Per-bolo 58, Per-bolo 45, L1448-IRS2E, and Cha-MMS1). Our goal is to characterize their envelopes and identify the most promising sources that could be bona fide FHSCs. We identify two candidates that are consistent with an extremely young evolutionary state (L1451-mm and Cha-MMS1), with L1451-mm being the most promising FHSC candidate. Although our envelope observations cannot rule out Cha-MMS1 as an FHSC yet, the properties of its CO outflow and SED published in recent studies are in better agreement with the predictions for a young protostar. For the remaining three sources, our observations favour a pre-stellar nature for Per-bolo 45 and rule out the rest as FHSC candidates. Per-bolo 58 is fully consistent with being a Class 0, while L1448 IRS2E shows no emission of high-density tracers (NH2D and N2H+) at the location of the previously identified compact continuum source, which is also undetected in our observations. Thus, we argue that there is no embedded source at the presumptive location of the FHSC candidate L1448 IRS2E. We propose instead that what was thought to be emission from the presumed L1448 IRS2E outflow corresponds to outflow emission from a nearby Class 0 system, deflected by the dense ambient material. We compare the properties of the FHSC candidates studied in this work and the literature, which shows that L1451-mm appears as possibly the youngest source with a confirmed outflow.


2020 ◽  
Vol 498 (2) ◽  
pp. 2295-2308
Author(s):  
B F O Gonçalves ◽  
J S da Costa ◽  
L de Almeida ◽  
M Castro ◽  
J-D do Nascimento

ABSTRACT We present a study of the evolutionary state of a few lithium-rich giant stars based on the Gaia Data Release 2 (DR2) parallaxes and photometry. We also investigate the chromospheric activity, the presence of a surface magnetic field, and the radial velocity for our sample stars. We analysed both archive and new data. We gathered archive spectra from several instruments, mainly ELODIE and NARVAL, and we added new data acquired with the spectrograph MUSICOS. We applied the least-squares deconvolution technique to obtain Stokes V and I mean profiles to compute longitudinal magnetic field for a subset. Moreover, for the same subset, we analysed the Ca ii H&K emission lines to calculate the S-index. We also derived atmospheric parameters and Li abundances for all 18 stars of our sample. We found that stars previously classified as red giant branch (RGB) may actually be at a different evolutionary state. Furthermore, we identified that most stars in our sample with detection of surface magnetic field show at least moderate rotation velocities, but none the less, we could not detect a magnetic field in two fast rotators. Because of our small sample of magnetic giants, it is difficult to determine if the presence of surface magnetic field and the Li-rich giant phenomena could be somehow linked. The large variation of the radial velocity of part of our sample indicates that some of them might have a binary companion, which may change the way we look at the Li problem in giant stars.


2020 ◽  
Vol 497 (4) ◽  
pp. 4843-4856 ◽  
Author(s):  
James S Kuszlewicz ◽  
Saskia Hekker ◽  
Keaton J Bell

ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.


2020 ◽  
Author(s):  
Cátia José Neves ◽  
Maor Matzrafi ◽  
Meik Thiele ◽  
Anne Lorant ◽  
Mohsen B. Mesgaran ◽  
...  

Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well suited model system to study sex determination in plants. A. palmeri is one of the most troublesome weeds in the US, has successfully colonized other regions in the world and has evolved resistance to several herbicide classes. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole genome sequencing of male and female pools from two independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex linked genes. Consequently, we employed an alignment free k-mer comparison which enabled us to identify a large number of male specific k-mers. We assembled male specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex determination system in the species. Based on our findings we suggest an intermediate evolutionary state of dioecy in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.


Sign in / Sign up

Export Citation Format

Share Document